
copyright: Mirosªaw Kutyªowski, Politechnika Wrocªawska

Security and Cryptography 2021

Mirosªaw Kutyªowski

VI. DISK ENCRYPTION

Problems

� random access � decryption of each page independently

� sector size (512, 4096 bytes versus blocksize of encryption)

� some mode to be used:

− ECB obviously wrong

− CBC and other modes require IV, but there is no extra space for storing IV!

� different IV's or so-called �tweaking� inside each sector

� no extra space in a sector, encryption �in place�



Malleability

CBC: if the plaintext is known, then one can change every second block to a desired value (every
second block would be junk):

− recall that Ci=EK(Ci−1�Pi)

− replace Ci−1 with Ci−1�Pi�P 0

− effect: then the ith block decrypts to P 0 (while block Pi−1 will become junk):

New(Pi)=new(Ci−1 )�DecK(Ci )= (Ci−1�Pi�P 0)� (Ci−1�Pi)=P 0

creating IV vectors (should not repeat!): Encrypted salt-sector initialization vector (ESSIV)

� IVn=EncK(n) where K =Hash(K0) and n is the sector number



Encryption algorithms

� attempts to use sector- size block ciphers - unpopular

� tweaking traditional block ciphers (tweakable narrow-block encryption)

LRW Liskov, Rivest, and Wagner

− C =EncK(P �X)�X (� denotes addition in the field)

where X =F 
 I (
 denotes multiplication in the field)

F is the additional key, I is the index of the block

− the issue of �red herrings�: encrypting the block F jj0n:

C0=EncK(F �F 
 0)� (F 
 0)=EncK(F )

C1=EncK(0�F 
 1)�F 
 1=EncK(F )�F

so F will be revealed



Xor�encrypt�xor (XEX)

− XJ =EncK(I)
�J

− CJ =EncK(P �XJ)�XJ

− I is the sector number, J is the block numer in the sector and � is a generator



XEX-based tweaked-codebook mode with ciphertext stealing (XTS)

− IEEE 1619 Standard Architecture for Encrypted Shared Storage Media

− different key for IV than for encryption (�through misunderstanding XEX specification�)

− deals with the sector size not divisible by the block size



− for the last block (a problem due to fixed size � one cannot use paddings!)

i expands the k byte plaintext with the last bytes of the ciphertext of the previous block,

ii the resulting ciphertext stores in place of the ciphertext of the previous block

iii the ciphertext from the previous block truncated to k bytes and stored as the last
ciphertext

for decryption: the missing n − k bytes are recovered from decryption of the ciphertext of
the last (originally) block

− problem: no MAC, one can manipulate blocks, something will be recovered!



Generating key for disk encryption from the password

Password-Based Key Derivation Function 2 (PBDKF2)

− DerivedKey=PBDKF2(PRF;Password; Salt; c; dkLen)

− c is the number of iterations requested

− DerivedKey=T1jjT2jj:::jjTdklen/hlen

− Ti=F (Password; Salt; c; i)

− F (Password;Salt; c; i)=U1
U2
 :::
Uc where 
 stands for xor

− U1=PRF(Password; Salt; i)

− Uj=PRF(Password; Uj−1) for 1< j < c

slight problem: if password too long, then first processed by hash, then some trivial collisions



Password hashing competition

− organized by a group of people

− Argon2 winner

− some controversies

− design goals:

− strictly sequential computation

− fills memory fast

− tradeoff resilience (smaller area results in higher time - but potentially compensated by
ASIC)

− scalability of parameters

− number of threads can be high

− GPU/FPGA/ASIC unfriendly

− optimized for current processors



Argon2 key derivation function

inputs:

− message P (up to 231− 1 bytes)

− nonce S (up to 231− 1 bytes)

− parameters: degree of parallelism p, tag length � , memory size m from 8p to 232− 1 kB,
number of iterations t, version v, secret K (up to 32 bytes), associated data X (up to
232− 1 bytes)



extract-then-expand

− extract a 64 byte value:H0=Hash(p; � ;m; t; v; y;<P >;P ;<S>;S;<K>;K;<X>;
X) where <A> denotes the length of A,

− expand using a variable length hash H 0:

− initialize blocks B[i; j] with p rows (i = 0; ::::; p − 1) and q = bm
4p
c � 4 columns, each

B[i; j] of 1kB

− B[i; 0]=H 0(H0jj0000jji)

− B[i; 1]=H 0(H0jj1111jji)

− B[i; j]=G(B[i; j− 1]jjB[i 0; j 0])) where i0; j 0 depend on the version, G - compression
function

− t iterations:

− B[i; 0]=G(B[i; q−1]jjB[i0 ; j 0 ])

− B[i; j]=G(B[i; j−1]jjB[i 0; j 0])

− final

− Bfinal=B[0; q− 1]�B[1; q− 1]� ::::�B[p− 1; q− 1]

− Tag=H 0(Bfinal)



variable length hashing

− Hx a hash function with output of length x

− if � � 64, then H 0(X)=H�(� jjX)

− if � > 64:

r= d� /32e− 2

V1=H64(� jjX)

V2=H64(V1)

...

Vr=H64(Vr−1)

Vr+1=H�−32r(Vr−1)

H 0(X)=A1jjA2jj:::jjAr jjVr+1

where Ai are the first 32 bits of Vi



compression function G

− Blake2b round function P used

− G(X;Y ) on 1kB blocks X;Y :

− R=X �Y , R treated as 8� 8matrix of 16-byte registers R0; ::::; R63

− (Q0; ::::; Q7)=P (R0; ::::; R7)

(Q8; ::::; Q15)=P (R8; ::::; R15)

...

(Q56; ::::; Q63)=P (R56; ::::; R63)

− (Z0; Z8; ::::; Z56)=P (Q0; Q8; ::::; Q56)

(Z1; Z9::::; Z57)=P (Q1; Q9; ::::; Q57)

...

(Z7; Z15; ::::; Z63)=P (Q7; Q15; ::::; Q63)

− finally output

Z �R


