copyright: Mirostaw Kutytowski, Politechnika Wroctawska

Security and Cryptography 2021
Mirostaw Kutyftowski

X. CLONE DETECTION and AVOIDANCE

problem: a hardware token executing cryptographic protocol can be cloned once the attacker
gets access to the internal state of the token with all secrets



Strategies
e no secrets in full control of one party/device (e.g.: distributed generation of keys)
e making clones useless (rapid changes and synchronization)

e immediate detection of active clones



Distributed key generation
e split responsibility for the key quality, at least 2 parties involved
e result:

| one party learns the key

il 2 parties share a key, but nobody has the entire key



Easy case — DL based systems

DH based procedure:

1. device A sends Xy= g”° to device B

2. device B sends X = g”! to device A

3. A responds with 2y (maybe encrypted with K = Hash( X))

4. B computes the public key K = X{"° and the private key z: =x¢- 1

5. A can check that the resulting key is K but has no knowledge about x

A version where A and B keep key shares, respectively, g and x4



Hard case — RSA

necessary to derive 2 prime numbers so that neither A nor B knows any of these primes

trick (from Estonian ID cards)

use 4K-bit numbers that haveé prime factors instead of 2 ) \OQ‘MW&& Co—p-

observation: the same algebra as for the original RSA show that if

e-d=1mod....

then

(m?¢=m mod n

Citreey LoV

(e )% )




Smart ID key generation

1. App generates a 2048-bit RSA key pair with the private key (n1,d;) and public key (n1,€)
/
2. App chooses dj at random 0. A,‘t A (Mbi ovdes ?f
3. App computes df = d; — dj "
4. App encrypts d] with its PIN, stores the ciphertext and deletes its plaintext
5. App deletes plaintext of d; (and information leading to factors of n;)
6. App sends 1, e,d] to SecureZone
7. SecureZone generates the 2048-bit RSA key pair with private key (no, ds) for public key
(n27 6)
A4
8. SecureZone computes «, 3 so that 5= \,\ ) 1

2
M+ﬂ-n2=1 rsd Wa

(Euclidean algorithm for integers, it works as n; and no are coprime whp).

9. SecureZone computes the user's public modulus n=n1 - ns

public key of a user is (n, e)



1.

2.

App asks for the PIN and decrypts the ciphertext of d}

App computes(lzz - encoding of @ ] \
Cavd

distributed “RSA” signature generation for M D @ Gov
\ / o “&th‘l'

. App computes 51 :=m%modn and sends it to Smart-ID Server
. Smart-ID Server computes m - encoding of M
. Smart-ID Server computes 57 = m% mod n,

. Smart-ID Server computes s; =S5} -s{modn
1° 51

[/
d, 4y A,

(so Slzmdlmodnl) g’,g",—\M oo
1 A

. Smart-ID Server computes 55 = m%mod ns

. Smart-ID Server computes

S:=0-ny-s1+a-ni-somodn

(by ChRT to get S such that@d S = SQmOdD

output: signature S



Verification

as for RSA: checking that S°=m modn
iff  S°=mmodn; and S¢=m modnsy
s{=m modn; and s5=m mod ns

(m9)¢=mmodn; and (m9)¢=m modna

SQ:M M\AM‘.\. ge:w —od 1

L



Security concept W=\ . Oa

in order to create a signature alone:

e App would need to create m¥mod ns — impossible if the original RSA signature is unforge-
able

D server would need to create m®mod n;. It knows n; but the exponent df’ is
random, so cannot help to forge an RSA signature for modulus e

S -
Conclusion n,e ¥ > - S e V\’]
/
/distributing private key can wor 11 N /" ﬂq g 3
whereas an adve ically clone at most one device /m

S



Highlight

Highlight

Highlight


Clone detection concepts

1. hide invig;ible characteristics in the device that may be used to fish out clone's signatures
post factum

2. discourage to use clones: key compromise in case of clone usage

3. fluctuation of distributed key



D Do, WY

Key fluctuation
works for RSA, EdDSA, Schnorr, ...

fluctuation (example for plain RSA)

App holds d;,//5erver holds d-

— signature creation:

| an integer@s negotiated
i App updates{ d;:=d; — A ) ~
PP up 1 1 €4+}

i Server updates( da:=da+A")

(computations over integers, as the group order is unknown)




Security concept of key fluctuation
e App and Server must be synchronized

e If App: and Apps are clones, then App; de-synchronizes Apps: if it attempts to sign, then
the signature will be invalid and the Server will notice the problem

ey (R) + (AZ—A>—AZ = d-b + 9
é/_; ngver o
7 IS
fﬁt\im)w ) |
/ hesy’
Bt D)t (A 'S
AQE’ i(fo\«( ' 4
W

QG
[ adiol

v\)\’r}nj



Tokens - example Smart-1D
Clone detection works thatnks to the following nonce (original Estonian description):

one-time password — created by Smart-ID Core in the end of each operation (incl. initialization)
and valid until the completion of next.

retransmit nonce — created in the beginning of each operation by Smart-ID App, the same
value must be used when Smart-ID App retries messages to Smart-ID Core, related to the same
operation.

freshness token — created by Smart-ID Core before each submission operation from Smart-1D
App to Smart-ID Core. Ensures that state-changing operations get executed in the order client
issued them (although some may be missing from between).



SU&V\( Ml Q‘)

Linking — microTESLA ...

at session k: [

i. A chooses R at random, R’:=Hash(R) (or an HMAC of R is MAC key shared)

i. A attacheso the current transmission

@ion k+1:]

I. lA authenticates himself with R

= if at some moment a clone is created and does not hijack synchronization with the server,

then it is useless /\/




Detection of active clones
idea: clone may emerge, but their holder will never use them without revelaling compromise
two examples:

1. failstop signatures

2. commitments



Failstop signatures

Domain Parameters and Keys:

— (G, — a group of a prime order ¢ such that DLP is hard in G|,

_E (G, be such that nobody should kno@ = H&S\f\( ot &x ...

A.1.22)
— one-time secret SK = (atl, x2, Y1, y2)
-

— one-time public key PK = (g”*h"*2, g¥'h¥?)
L/_\/



Failstop one-time signature
e Sign(SK,m)=(01(SK, m),02(SK,m)) where
e 01(SK,m)=x1+m-yimodq
o2(SK, m) =25+ m- yamod ¢
Failstop signature verification

if PK = (p1, p2) then the signature is valid iff







Lixed — & &
for m g A

Security concept

L\ai Vi 2\_)
— there are ¢ solutions for o1, 09 K1 X % 32
3T ot h
— an adversary breaking p1, po may have valid keys, can use them, but then the legitimate user
can derive log h C. o
A7 2
\ C
c, o, N L2


Highlight

Highlight

Highlight





Commitment to ephemeral values

e signature i contains a commitment to Fpext = ¢* <t used in the next signature. E.g., the
signature is over M ||Hash(rpext) instead of M

e the next signature uses r = ryext

e in order to remember 7.« one can design a scheme where 7, = ¢g* where
@: Ha‘ﬁzmkz) nd x is an extra key (as for EdDSA signatures) |
ﬁ'?
N s > ]
DS =g — —

Situation:

— the sth signature created by a clone and the ith signature created by the original device -
use the same k;

— the same k; for different messages = secret key gets exposed

— so: using a clone reveals the fact that the key is compromised



