
copyright: Mirosªaw Kutyªowski, Politechnika Wrocªawska

Security and Cryptography 2021

Mirosªaw Kutyªowski

X. WIFI

standards:

− evolution

− little interaction with academic community

− underspecified,

− sometimes not literally implemented, lack of documentation

− sometimes formal security proofs � like for WPA, but nevertheless ... attacks

Learning from early mistakes: WEP

� stream encryption

� PRNG reinitialized frequently, the seed is the frame identifier + shared seed

� problems with PRNG algorithm RC4

RC4 KSA (Key Scheduling Algorithm) for key K

for i=0 to 255 do

S[i] := i

end

j := 0

for i= 0 to 255 do

j:= j+S[i]+K[i mod len(K)] mod 256

swap(S, i , j)

end

i:=0, j:=0

RC4 PRNG, execute the following loop as long as output needed:

i:=i + 1 mod 256

j:= j + S[i] mod 256

swap(S, i , j)

return S[S[i] + S[j] mod 256]

FMS Attack (Fluhrer, Mantin, Shamir)

− assumption: the adversary already knows the first l bytes of the key AND the first output
byte of RC4 PRNG

− so the adversary can perform the first l steps of Key Scheduling Algorithm

− the goal will be to learn one more byte of the key

− assumptions about the state of KSA after l steps for a given initial vector:

! Sl[1]< l

! Sl[1] +Sl[Sl[1]] = l

− validity of the assumption for a given initial vector can be checked by simulation of the first
l steps

− assume that:

− Sl[1]; Sl[Sl[1]]; Sl+1[l] did not participate in any swaps during the rest of the KSA (it is
likely to occur)

− then:

− for the generation of the first output byte we take

Sn+1[Sn+1[1] +Sn+1[Sn[1]]]

− if the assumption was ok then this is the same as

Sn+1[Sl[1] +Sl[Sl[1]]] =Sn+1[l] =Sl+1[l] =Sl[jl+1]

the last equation follows from the fact that at the step l+1 there is a swap at positions
l and jl+1

− from the output byte we derive the candidate for jl+1 (the position of the output byte
in Sl)

− on the other hand: jl+1= jl+K[l] +Sl[l], so we may derive a candidate for K[l]

− the first swap of PRNG will swap S[1] and S[S[1]] and this does not change the value
of S[1] +S[S[1]],

− HOWEVER the output value would be affected by the swap if S[1] + S[S[1]] = 1 or
S[1] +S[S[1]] =S[1]

! case: S[1] +S[S[1]] = 1

then: since the values has not been changed (assumption), we would have Sl[1] +
Sl[Sl[1]]=1 as well. But it is equal to l by another assumption. The case is impossible
to occur!

! case: S[1] +S[S[1]] =S[1]

then: Sl[1]+Sl[Sl[1]]=Sl[1], so Sl[Sl[1]]=0. But Sl[1]<l and Sl[1]+Sl[Sl[1]]= l,
so we must have Sl[Sl[1]]> 0. The case is impossible.

so the swap

Krack against WPA2

− attack based on crypto assumption: �no IV used twice�

− works despite �provable security�, but the proofs have not modelled all scenarios

− effects depend on particular implementation. Most cases:

� decryption due to reuse of the same string in stream cipher

� or just making mess by replay attack (e.g. against NTP- network time protocol)

4-way handshake

− �supplicant�= user, �authenticator�=Access Point

− PMK Pairwise Master Key is preshared

− PTK (Pairwise Transient Key) derived as a session key

− PTK=f(PMK; ANonce; SNonce), PTK splitted into TK (Temporal Key), KCK (Key
Confirmation Key), KEK (Key Encryption Key)

− for WPA2 also GPK (Group Temporal Key) transported to the supplicant (used by AP for
broadcast)

− frames: EAPOL consisting of

− header - determines which message it is in the handshake

− replay counter � used to detect replayed frames, replay counter will be increased

− nonce - nonces (of supplicant and authenticator) to generate new keys

− RSC Receive Sequence Counter - starting packet number of a group key

− MIC - contains Message Integrity Check created with KCK

− Key Data - contains group key encrypted with KEK

− encryption schemes used: AES-CCMP, GCM , MAC: Michael (weak), GHASH (from GCM)

handshake:

− notation: after �;� the data are encrypted

− green background = �sometimes�

− EncKi is encryption with key K and IV i

association stage

4-way handshake

group key
handshake

supplicant

derive PTK

install PTK,GTK

install GTK

Authentication request !
 Authentication response

 Msg1(r,Anonce)

Msg2(r,Snonce) !
 Msg3(r+1,GTK)

Msg4(r+1) !

 EncPTKx (Group1(r+2;GTK))
EncPTK

y (Group2(r+2))!

authenticator

derivePTK

install PTK

install GTK

Table 1.

− state automaton definded, states for the supplicant:

A PTK-INIT:

� entered when 4 way handshake started

� exit to state PTK-START with Msg1 received

� operations: PMK- preshared master key

B PTK-START:

� exit: self loop with MSg1 received, with proper Msg3 to state PTK-NEGOTIATING
(proper= MIC correct and no replay)

� operations:

− TPTK=CalcPTK(PMK,ANonce,SNonce)

− Send Msg2(SNonce)

C PTK-NEGOTIATING:

� exit: unconditional to PTK-DONE

� operations:

− PTK=TPTK

− Send Msg4

D PTK-DONE:

� exit: to PTK-START if Msg1 received, to PTK-NEGOTIATING if proper Msg3
received

attack 1 - plaintext retransmission of Msg3

supplicant

derive PTK

install PTK,GTK

resinstall PTK,GTK

 Msg1(r,Anonce)

Msg2(r,Snonce) !
 Msg3(r+1;GTK)

Msg4(r+1) !

EncPTK
1 fData(A::::)g!

 Msg3(r+2;GTK)
EncPTK

2 fMsg4(r+1)g!

EncPTK
1 fData(B::::)g!

adv
 Msg1(r,Anonce)

Msg2(r,Snonce) !
 Msg3(r+1;GTK)

 Msg3(r+2;GTK)

EncPTK
2 fMsg4(r+1)g!

Msg4(r+1) !

EncPTK
1 fData(::::)g!

authenticator

derivePTK

(rejected)

install PTK

mechanism:

� according to the 802.11 standard Msg4(r+1) will be accepted as it is checked that r+1 is
a replay counter used before

� the problem is that EncPTK1 fData(A::::)g and EncPTK1 fData(B::::)g use the same IV but
security of the encryption modes used collapse in this case

attack 2 - only ciphertext retransmission of Msg3 accepted

CPU
 Msg1(r,Anonce)

Msg2(r,Snonce) !

 Msg3(r+1;GTK)
 Msg3(r+2;GTK)
Msg4(r+1) !
install keys !

Msg4(r+2) !
install keys !

Data(::::)!

NIC

install PTK,GTK

reinstall PTK,GTK

 Msg1(r,Anonce)

Msg2(r,Snonce) !
 Msg3(r+1;GTK)
 Msg3(r+2;GTK)

Msg4(r+1) !

EncPTK1 fMsg4(r+2)g!

EncPTK1 fData(::::)g!

adv.

mechanism:

� assumption: encryption and decryption offloaded to NIC (network interface controller)

� main CPU does not decrypt messages and always receives messages already decrypted by
NIC,

� so it cannot distinguish the case when Msg3(r+2;GTK) has been received as plaintext or
already encrypted. In both cases the reaction is the same and asks NIC to install keys

� adversary holds the first Msg3 until the authenticator sends another one because of no
response

� finally two ciphertexts created with the same IV

� the problem is that in fact there are two state machines - one for main CPU and one for NIC
and collectively they are not equivalent to the original machine from the standard

attack 3 - in some systems (MacOS) the message Msg3 has to be encrypted

attack when refreshing the key

CPU
 Msg1(r,Anonce)

Msg2(r,Snonce) !

 Msg3(r+1;GTK)
 Msg3(r+2;GTK)
Msg4(r+1) !
install keys !

Msg4(r+2) !
install keys !

Data(::::)!

NIC

install PTK,GTK

reinstall PTK,GTK

 Msg1(r,Anonce)

Msg2(r,Snonce) !
 Encptk

x (Msg3(r+1;GTK))

 Encptk
x+1(Msg3(r+2;GTK))

Msg4(r+1) !

EncPTK1 fMsg4(r+2)g!

EncPTK1 fData(::::)g!

adversary

mechanism:

� the countermeasure was that when refreshing then the Msg3 must be encrypted

� intention was that encryption with the new key so after reinstallation new key used and no
problem that the counter starts again from 1

� the mistake is that it is not checked under which key the message has been encrypted

attack 4 - group key reinstallation

challenge:

when to reinstall the key for AP? Options:

a) right after sending information to the supplicants

b) after receiving ack from all supplicants

each scenario leads to problems

attack 4a - group key reinstallation immediately after sending group message

supplicant

install GTK

reinstall GTK

 EncPTK
x fGroup1(r;GTK)g

EncPTK
y fGroup2(r)g!

 EncGTK
1 fGroupData(:::)g

 EncPTK
x+1 fGroup1(r+1;GTK)g

 EncGTK
1 fGroupData(:::)

adv

 EncPTK
x fGroup1(r;GTK)g

 EncPTK
x+1 fGroup1(r+1;GTK)g

 EncGTK
1 fGroupData(:::)g

authenticator
refresh GTK

install GTK

mechanism:

� after key reinstallation one can replay the old message as the index 1 will be accepted again

