copyright: Mirostaw Kutytowski, Politechnika Wroctawska

Security and Cryptography 2021

Mirostaw Kutyfowski

X. WIFI

standards:

— evolution

— little interaction with academic community

— underspecified,

— sometimes not literally implemented, lack of documentation

— sometimes formal security proofs — like for WPA, but nevertheless ... attacks

Learning from early mistakes: WEP
e stream encryption

e PRNG reinitialized frequently, the seed is the frame identifier + shared seed
e problems with PRNG algorithm RC4

RC4 KSA (Key Scheduling Algorithm) for key K
for i=0 to 255 do
S[i] =i
end
j:=0
for i= 0 to 255 do
j:= j+S[i]+K[i mod len(K)] mod 256
swap(S, i,j)
end

i:=0, j:=0

RC4 PRNG, execute the following loop as long as output needed:

i:=i + 1 mod 256
j:==J 4+ SJ[i] mod 256
swap(S,i,j)

return S[S[i] + S[j] mod 256]

FMS Attack (Fluhrer, Mantin, Shamir)

assumption: the adversary already knows the first [bytes of the key AND the first output
byte of RC4 PRNG

— so the adversary can perform the first [steps of Key Scheduling Algorithm
— the goal will be to learn one more byte of the key

assumptions about the state of KSA after [steps for a given initial vector:

— Sl <1

— Si[1]+ Si[Si[1]] =1

validity of the assumption for a given initial vector can be checked by simulation of the first
[steps

assume that:

— Si[1], Si[S1[1]], Si+1]l] did not participate in any swaps during the rest of the KSA (it is
likely to occur)

then:
— for the generation of the first output byte we take

Snt 1] Snta[1] + Sn1[Sal1]]]

— if the assumption was ok then this is the same as

Sn1[Silt] + SiISi1]] = Snall] = Si41[l] = Silji41]

the last equation follows from the fact that at the step [+ 1 there is a swap at positions
[and ji 41

from the output byte we derive the candidate for j; 1 (the position of the output byte
in .S))

on the other hand: j; 11 = j;+ K|l] + Si[l], so we may derive a candidate for Kl]

the first swap of PRNG will swap S[1] and S|[S|[1]] and this does not change the value
of S[1]+ S[S[1]],

HOWEVER the output value would be affected by the swap if S[1] + S[S[l]]=1 or
S[]+SS[]} =5[]

— case: S[1]+ S[S[1]] =1

then: since the values has not been changed (assumption), we would have S;[1] +
Si[S1[1]] =1 as well. But it is equal to [by another assumption. The case is impossible
to occur!

— case: S[1]+ S[S[1]] = S[1]

then: Sl[l] —|—Sl[Sl[1H = Sl[l], SO Sl[Sl[lﬂ — (. But Sl[l] <! and Sl[l] —|—Sl[Sl[1H =1,
so we must have S;[S;[1]] > 0. The case is impossible.

so the swap

Krack against WPA2
— attack based on crypto assumption: “no IV used twice"
— works despite “provable security”, but the proofs have not modelled all scenarios
— effects depend on particular implementation. Most cases:
e decryption due to reuse of the same string in stream cipher
e or just making mess by replay attack (e.g. against NTP- network time protocol)
4-way handshake
— "supplicant”’= user, “authenticator’'=Access Point
— PMK Pairwise Master Key is preshared
— PTK (Pairwise Transient Key) derived as a session key

— PTK=f(PMK, ANonce, SNonce), PTK splitted into TK (Temporal Key), KCK (Key
Confirmation Key), KEK (Key Encryption Key)

— for WPA2 also GPK (Group Temporal Key) transported to the supplicant (used by AP for
broadcast)

— frames: EAPOL consisting of
— header - determines which message it is in the handshake
— replay counter — used to detect replayed frames, replay counter will be increased
— nonce - nonces (of supplicant and authenticator) to generate new keys
— RSC Receive Sequence Counter - starting packet number of a group key
— MIC - contains Message Integrity Check created with KCK
— Key Data - contains group key encrypted with KEK

— encryption schemes used: AES-CCMP, GCM , MAC: Michael (weak), GHASH (from GCM)

handshake:

— notation: after ;" the data are encrypted

— green background = “sometimes”

— Encl is encryption with key K and IV i

association stage | supplicant authenticator
Authentication request —
« Authentication response
4-way handshake «— Msg1(r,Anonce)
derive PTK

Msg2(r,Snonce) —

— Msg3(r+1,GTK)

derivePTK
Msgd(r+1) —
install PTK,GTK install PTK
group key — Encgri(Groupl(r +2; GTK))
handshake Encgrk(Group2(r +2)) —
install GTK install GTK

Table 1.

— state automaton definded, states for the supplicant:
A PTK-INIT:
e entered when 4 way handshake started
e exit to state PTK-START with Msgl received
e operations: PMK- preshared master key
B PTK-START:

e exit: self loop with MSgl received, with proper Msg3 to state PTK-NEGOTIATING
(proper= MIC correct and no replay)

e operations:
— TPTK=CalcPTK(PMK,ANonce,SNonce)
— Send Msg2(SNonce)
C PTK-NEGOTIATING:

e exit: unconditional to PTK-DONE

e operations:
— PTK=TPTK
— Send Msg4
D PTK-DONE:

e exit: to PTK-START if Msgl received, to PTK-NEGOTIATING if proper Msg3
received

attack 1 - plaintext retransmission of Msg3

supplicant adv authenticator
«— Msgl(r,Anonce) «— Msgl(r,Anonce)
derive PTK
Msg2(r,Snonce) — Msg2(r,Snonce) —
— Msg3(r+1;GTK) — Msg3(r+1;GTK)
derivePTK

Msgd(r+1) —

install PTK,GTK

Encprg{Data(A....)} —
— Msg3(r+2;GTK) — Msg3(r+2;GTK)

Encl%TK{MsgéL(r +1)}—

resinstall PTK,GTK

Encg g {Msgd(r + 1)} — [(rejected)
Msg4(r+1) —

install PTK

EnC%TK{Data(B....)}H EncllaTK{Data(....)} —

mechanism:

e according to the 802.11 standard Msg4(r+1) will be accepted as it is checked that r+1 is
a replay counter used before

e the problem is that Encprr{Data(A....)} and Enchrg{Data(B....)} use the same IV but
security of the encryption modes used coIIapse in this case

attack 2 - only ciphertext retransmission of Msg3 accepted

CPU

NIC

«— Msg1(r,Anonce)

«— Msg1(r,Anonce)

adv.

Msg2(r,Snonce) —

Msg2(r,Snonce) —

— Msg3(r+1,GTK)

— Msg3(r+2;GTK)

«— Msg3(r+1;GTK)

— Msg3(r+2;GTK)

Msgd(r+1) —

install keys —

Msgd(r+1) —

install PTK,GTK

Msgd(r+2) —

install keys —

Encprx{Msgd(r +2)} —

reinstall PTK,GTK

Data(....) —

mechanism:

Encprk{Data(....)} —

e assumption: encryption and decryption offloaded to NIC (network interface controller)

main CPU does not decrypt messages and always receives messages already decrypted by
NIC,

so it cannot distinguish the case when Msg3(r+2;GTK) has been received as plaintext or
already encrypted. In both cases the reaction is the same and asks NIC to install keys

adversary holds the first Msg3 until the authenticator sends another one because of no
response

finally two ciphertexts created with the same IV

the problem is that in fact there are two state machines - one for main CPU and one for NIC
and collectively they are not equivalent to the original machine from the standard

attack 3 - in some systems (MacOS) the message Msg3 has to be encrypted

attack when refreshing the key

CPU

NIC

«— Msg1(r,Anonce)

«— Msg1(r,Anonce)

adversary

Msg2(r,Snonce) —

Msg2(r,Snonce) —

«— Encyi(Msg3(r+1;GTK))

— Msg3(r+1,GTK)

— Encgﬁf{l(l\/lsg3(r-|—2;GTK))

«— Msg3(r+2;GTK)

Msgd(r+1) —

install keys —

Msgd(r+1) —

install PTK,GTK

Msgd(r+2) —

install keys —

reinstall PTK,GTK

Enc%TK{MsgA(r +2)}—

Data(....) —

Encpri{Data(....)} —

mechanism:
e the countermeasure was that when refreshing then the Msg3 must be encrypted

e intention was that encryption with the new key so after reinstallation new key used and no
problem that the counter starts again from 1

e the mistake is that it is not checked under which key the message has been encrypted

attack 4 - group key reinstallation

challenge:

when to reinstall the key for AP? Options:

a) right after sending information to the supplicants
b) after receiving ack from all supplicants

each scenario leads to problems

attack 4a - group key reinstallation immediately after sending group message

authenticator

— Encgrg{Groupl(r; GTK)}

refresh GTK

install GTK

— Encitk{Groupl(r + 1; GTK)}

— Enctrg{GroupDataf(...)}

supplicant adv

— Encgrg{Groupl(r; GTK)}
install GTK

Encg i {Group2(r)} —

— Enctrg{GroupDatal(...)}

— Encit i {Groupl(r+1; GTK)}

reinstall GTK

«— Enc{,rg {GroupData(...)
mechanism:

e after key reinstallation one can replay the old message as the index 1 will be accepted again

