copyright: Mirostaw Kutytowski, Politechnika Wroctawska

Security and Cryptography 2021
Mirostaw Kutyftowski

grading criteria: ID 0

e up to 50 points from lecture (exam), up to 50 points from dr Kubiak (project...)
2

o the lecture at least - 30% ot of 50 points must be earned to pass

e sum of points = the final grade, 3.0: >40 points , 5.0 > 80 points

e exam requires problem solving, memorizing facts is unnecessary
memorizing facts

skills to be learned: developing end-to-end security systems, flawless in the real sense!

presence: obligatory during the lectures
)
exam date and form: subject to the situation

place: 11:15-13 Wednesday, 11:15-13 Friday, MS Teams

adjustments possible in order to ease logistics problems

grading system used last year:
e for each “chapter’ consisting of a specific topic some verification of skills of the students
e possible verification forms:

| an assignment by myself (some concrete task/problem to be solved at home and returned
within e.g. 1 week)

Il written exam with ePortal

answer a problem to be typed in or solved on paper, jpeg to be uploaded within, say, 15
minutes

e IPR taken very seriously
S~——

Online materials:
e available on my webpage
https://kutylowski.im.pwr.wroc.pl/lehre/cs21/

e ePortal will be used for 1-1 communiaction with the students (as it keeps a history of each
conversation),

e tests — no decision about the platform yet. Subject to: stability and reliability of these tools

Contact:

e during the lecture: mute yourself, when having a question please unmute and switch on your
video (the group is small enough to do it)

e email: yes, but assignments etc over ePortal INCS g

—

e the phone at Politechnika — no!

o Ll\@gmsjgr conf calls

e Signal as second independent channel?

FAILURE EXAMPLES TO LEARN FROM

I.1. PKI for Signing Digital Documents

PKI - Public Key Infrastructure

strong authentication of digital documents with digital signatures seems to be possible
digital signatures
in fact we get an evidence that the holder of a private key has created a signature
- /
who holds the key? PKI has to provide a certified answer to this question

PKI is not a cryptographic solution - it is an organizational framework (using some crypto

tools) kev& £—O PL'\:)C\“‘\ PQ%OV‘ ,D CO\VD\ T PL

—Z
/ PKl,m ZanLony podpig

® a certi e binds a publ with an ID of its alleged owner, — 2

a couple of other fields, IikeM, key usage, certification policy, ...
certimication poticy

PESE L

. . -_——
certificate signed by CA (Certification Authority)

tree of CA’s (or a directed acyclic graph), with roots as “roots of trust”

status of a certifi change - revocation /((a <

checking status methods: CRL, OCSP

reasons for PKI failure:
a nice concept of digital signatures but
1. big infrastructure required:

—. substantial cost and effort
~——— __/

—. long time planning needed (so possible in China, but not in Europe)

—. unclear financial return

—

2. scope of necessary coordination,

—. in order to work must be designed at least for the Common Market

—. example of killing the concept: link to certification policy in Polish
- ——————————

3. lack of interoperability (sometimes as business goal .
y (goal) S Fove

—. companies make efforts to eliminate competition

—. standarization may be focused on securing market shares \%/

—. a long process ... ‘EO l/——c\‘ih
N 2
%—|§ “

D ver)

4. necessary trust in roots

—_————

(%

—. how do you know that the root is honest? >

VeV J€3
S@Single point of fraud, (e.g. with fake breeding d s)

—. once you get a certificate you may forge signatures

6. responsibility of CA Q)\,xﬁg "~ (‘“%-‘(’ woC

> =
g esponsiviiny 200 LN

';hSUVﬁ‘.’\ﬁancial risk — based o /
—_——
7. cost - who will pay? For the end user the initial cost is too high.

—. certificates are too expensive for just a few signatures (at least initially)
. : : >
8. _Iggal\strength of signatures (\OD&\P\S bQQbIQ&\ o v

—. if scheme broken or signing devices turn out to be insecure you are anyway responsible
for the signatures. After revocation only the new signatures invalid

9. unsolved problem of revocation: possible to check the status in the past but not now

reason: mismatch of requirements and interests with the designed solution

“._.but there nothing one can do about it.” — this is false

e Smart-ID project, Estonia (clever RSA-like solution, mediated signatures, no CRL, OCSP
needed)

e SPKI idea (source centric certification), suicide notes, certificates of health

P\L bvoew AV N3
\ \ g'\>w_—\\)"ts \
\/ ZRA Jd,
= ot v uer N -
e\
\z&vng

oo o
Pl

before Smart-ID in Estonia

e personal ID smart cards, implements RSA signature of the owner

e certificate of BSI ‘or Infineon chip and software

e Czech colleagues from Brno found that the RSA keys generated so that the old attacks work

e an implementation bug or a traedoor
)

e all smart cards had to be updated

nch

/ C.N.

Smart-ID
1. RSA:
—. "RSA" where n is a product of two RSA numbers
—. the same algebra — no difference seen unless you factorize n
—. but secret keys distributed between tw and a mediator server

*

—. nobody has full knowledge of the secret keys
e —

2. links between consecutive signatures (to be checked by the mediator server)

3.4revocation by hlacklisting on the server

9«“8"‘ " —>
D CTE
“Zﬁj y

< 1

l.2. Clickjacking on Android

Overlay mechanism:
e apps are.separated.in their sandboxes - security design mechanism
e all apps display informations on the screen at the same time - they are overlays
e overlays:
— require Android permissions
— clickable or paththrough
— opaque or transparent

— combining: parameter o defines weights: for each color of RGB the new pixel value is

old - +new - (1 — «)

e basic clickjacking:
— on top an opaque overlay with something innocent (game...)
— button is in fact a batton but the overlay is paththrough at this place

— below is an unvisible button of an attacked app

defense: Google's “obscure flag” - an app checks if at the moment of clicking there is an
overlay above it

— |
@
Q TR TR\ R

e context-hiding clickjacking: overlay covers everything but not the button

defense: Google's “hide overlays’ (applicable only in case of settings etc as the users like
overlays)

e examples of attacks:

— Google play: after installing the app it asks for “open app”, but acceptance is for installing
and opening something else

— Browser: cover the context and make the user click (e-voting?)
“

— gmail: prepare a message, cover it with overlay and ask for accepting “send” button
e | S

L]

‘ — Qhatsapp, Wechﬁsend messages, sw(and learn attacked

SIM subscriber number)

— Google Authenticator: “long click” copies a token to clipboard (and makes it available to
other apps)

— Facebook, Tweeter: unprotected, possibilities to insert likes, send tweets, ...
V

— Lookout Mobile Security: 3 clicks and anti-virus protection disabled

| -

e remedy?
‘— no effective protection mechanism known

— architecture separates apps so it is impossible to ask what the other apps are showing

¢
. — some overlays must be tolerated due to expectations of the users

L]

— pressure to run security critical apps (banking...)

Clickshield:
— requires minor changes in the Android framework
— concentrates on the central region (as on margin no critical buttons observed)

— attempts to check whether between the pixel of a target app and the screen final render
pixel there is a nonmalicious relationship

— « render: fr = round(a - ov + (1 — «) - ta) where ta=target app pixel value,

ov=overlay..., fr=final v —

\Q®§' \WA §’& wd el
passwed Iy, 924

— given fr and ta we do not know « and ov, but

— choose two points and assume that the overlay is uniform. Then solve for a:

fr1:a®r+(1—oz)-ta1

fro=a-ov+ (1 —a)-tas
N/
— use this fixed « to estimate ov over the whole screen. the outcome should be
uniform in case of uniform verlays or those informing on margin (notifications)

Otherwise expect a context switching.

|.3. Easy Fishing on Android

e mobile password managers:
— associate app (package name) with a domain name

— for a domain name associated with the app insert the user’s credentials when the app
accesses this URL

— credentials are related to the domain name (facebook.com, etc) and not to the app

— in fact: improves protection against fishing (difference between facebook and faceb00k
detected, a human may make a mistake)

e Instant Apps: instead of downloading the whole app fetch only a small app that emulates
the full version with accessing an URL

— gets a full control over the screen — e.g. it may hide browser's security information

e limitations: at most one app with the same package name on an Android device, and at
most one in Play Store

e attack:

— create an app
S

— choose the package name so that the mapping points to the attacked domain

— include[developer’'s URL jor Instant App purposes (it is not checked by the Play Store)

— lure the user to run Instant App

— the credentials will be included by the Password Manager

— the information will go to the developer's URL

—— _—

— Instant App will show something different on the screen (information from password
manager need not to be visible, browser information will be covered as well)

— the user should dislike the app and consequently the app will not be downloaded (no
traces of forgery)

e mappings:

— most important associations on a kind of whitelist

— one-to-one would be more secure but frequently many apps to one domain

— (insecure) heuristics:

1

4

Keeper: finds a corresponding entry on play.google.com and takes “app developer
website field” , it autosuggests this name to the user,

attacks: write malicious app “developer website field”

Dashlane: hardcopied 81 mappings, rest: autosuggestion heuristic based on at least
3 matching characters: xxx.face.yyy will be mapped to facebook.com

attack: use similar package names

Lastpass: translates directly (aaa.bbb.ccc to bbb.aaa), if not existing then consult
from crowdsourced mapping (distributed database created by users — where it is easy
to inject something)

1Password: does not provide mapping but presents suggestions and enables the user
— a human to choose (and confuse FACEBOOK with FACEBOOK)

Google Smart Lock — burden of mapping to the developer (at the time not auto-
mated process) based on Digital Asset Links (on the website a list of permitted apps,
authenticated with hashes of the signing key)

.4. Buying a system

Problem:

somebody has to deploy a secure IT system, how to purchase it?

e problematic requirements according to BSI guide:

Vi

Vil

incomplete - forgetting some threats is common

not embedded: not corresponding really to the environment where the product
has to be deployed

implicit: customer has in mind but the developer might be unaware of them
not testable: ambiguous, source of legal disputes, ...

too detailed: unnecessary details make it harder to adjust the design
unspecified meaning: e.g. “protect privacy”

inconsistent: e.g. ignoring trade-offs

specification-based purchasing process) versus /selection-based purchasing process

the user is not capable of determining the properties of the product himself: too
complicated, too specialized knowledge required, a single error makes the product
useless

specifications of concrete products might be useless for the customers — hard to
understand and compare the products

informal specifications and descriptions, no access to crucial data

1.5. Blind Trust

Idea - our dream situation:

a security solution should work even if

—(the designer is lazy, stupid, malicious, ...

e

~Ghe components are malicious, faulty, ...

4< crypto in fact has been broken by bad guys

— | there are trapdoors j

Today
we are focused on

— security assumptions (probably invalid)

—

— [trust to ... ’
— [standard situatiorQ

—>(trusting Al products based on ML)

atacrypt)don't wait for quantum computer, catastrophy is already there due to other reason

—

