
copyright: Mirosław Kutyłowski, Politechnika Wrocławska

Security and Cryptography 2022

Mirosław Kutyłowski

VI. CLONE DETECTION and AVOIDANCE

problem: a hardware token executing cryptographic protocol can be cloned once the attacker
gets access to the internal state of the token with all secrets

1

Strategies

• no secrets in full control of one party/device (e.g.: distributed generation of keys)

• making clones useless (rapid changes and synchronization)

• immediate detection of active clones

2

Distributed key generation

• split responsibility for the key quality, at least 2 parties involved

• result:

i. one party learns the key

ii. 2 parties share a key, but nobody has the entire key

3

Easy case – DL based systems

Goal: prevent the device A to choose a weak key (for the manufacturer)

(it may be a weakness installed by the manufacturer)

1. device A sends X0= gx0 to user B

2. user B sends x1 to device A

3. A creates the secret key x0 ·x1 , the public key is PK=X0

x1

4. B can recompute PK and check that it is correct

4

Easy case – DL based systems

Goal: splitting the key between devices A and B

(nobody has control over the full key)

1. device A sends X0= gx0 to device B

2. device B sends X1= gx1 to device A

3. A holds the share x0 and the public key PK=X0 ·X1

4. B holds the share x1 and the public key PK=X0 ·X1

5

Distributed generation of a Schnorr signature

1. A chooses kA at random, computes rA= gkA and sends rA to B

2. B chooses kB at random, computes rB= gkB and sends rB to A

3. A and B compute e8 Hash (M, rA · rB)

4. A computes and outputs sA8 kA− e ·x0 mod q

5. B computes and outputs sB8 kB − e ·x1 mod q

6. one can compute s8 sA+ sB mod q and output (s, e)– a signature of M corresponding
to key PK=X0 ·X1

6

Hard case – RSA

necessary to derive 2 prime numbers so that neither A nor B knows any of these primes

trick (from Estonian ID cards)

use 4K-bit numbers that have 4 prime factors instead of 2

observation: the same algebra as for the original RSA show that if

e · d=1mod
 .

then

(md)e=m mod n

7

Smart ID key generation

1. App generates a 2048-bit RSA key pair with the private key (n1, d1) and public key (n1, e)

2. App chooses d1
′ at random

3. App computes d1
′′= d1− d1

′

4. App encrypts d1
′ with its PIN, stores the ciphertext and deletes its plaintext

5. App deletes plaintext of d1 (and information leading to factors of n1)

6. App sends n1, e, d1
′′ to SecureZone

7. SecureZone generates the 2048-bit RSA key pair with private key (n2, d2) for public key
(n2, e)

8. SecureZone computes α, β so that

α ·n1+ β ·n2=1

(Euclidean algorithm for integers, it works as n1 and n2 are coprime whp).

9. SecureZone computes the user’s public modulus n=n1 ·n2

public key of a user is (n, e)

8

Distributed “RSA” signature generation for M

1. App asks for the PIN and decrypts the ciphertext of d1
′

2. App computes m - encoding of M

3. App computes s1
′

8 md1
′

modn1 and sends it to Smart-ID Server

4. Smart-ID Server computes m - encoding of M

5. Smart-ID Server computes s1
′′=md1

′′

modn1

6. Smart-ID Server computes s1= s1
′ · s1

′′modn

(so s1=md
1modn1)

7. Smart-ID Server computes s2=md2modn2

8. Smart-ID Server computes

S8 β ·n2 · s1+α ·n1 · s2 modn

(by ChRT to get S such that S= s1modn1 and S= s2modn2

output: signature S

9

Verification

as for RSA: checking that Se=mmodn

Se=mmodn iff Se=mmodn 1 ∧ Se=mmodn2

s1
e=mmodn1 ∧ s2

e=mmodn2

(md1)e=mmodn1 ∧ (md2)e=mmodn2

10

Security concept

in order to create a signature alone:

• App would need to create md2mod n2 – impossible if the original RSA signature is
unforgeable

• Smart-ID server would need to create md1mod n1. It knows n1 but the exponent d1
′′ is

random, so cannot help to forge an RSA signature for modulus e

————————–

Conclusion

distributing private key can work

whereas an adversary can typically clone at most one device

11

Clone detection concepts

1. hide invissible characteristics in the device that may be used to fish out clone’s signatures
post factum

2. discourage to use clones: key compromise in case of clone usage

3. fluctuation of distributed key

12

Key fluctuation

works for RSA, EdDSA, Schnorr, ...

fluctuation (example for plain RSA)

− App holds d1, Server holds d2

− signature creation:

i. an integer ∆ is negotiated

ii. App updates: d18 d1−∆

iii. Server updates d28 d2+∆

(computations over integers, as the group order is unknown)

13

Security concept of key fluctuation

• App and Server must be synchronized

• If App1 and App2 are clones, then App1 de-synchronizes App2: if it attempts to sign, then
the signature will be invalid and the Server will notice the problem

14

Tokens - example Smart-ID

Clone detection works thatnks to the following nonce (original Estonian description):

one-time password – created by Smart-ID Core in the end of each operation (incl. initial-
ization) and valid until the completion of next.

retransmit nonce – created in the beginning of each operation by Smart-ID App, the same
value must be used when Smart-ID App retries messages to Smart-ID Core, related to the
same operation.

freshness token – created by Smart-ID Core before each submission operation from Smart-
ID App to Smart-ID Core. Ensures that state-changing operations get executed in the order
client issued them (although some may be missing from between).

15

Linking – microTESLA ...

at session k:

i. A chooses R at random, R ′

8 Hash(R) (or an HMAC of R is MAC key shared)

ii. A attaches R ′ to the current transmission

at session k+1:

i. A authenticates himself with R

⇒ if at some moment a clone is created and does not hijack synchronization with the server,
then it is useless

16

Detection of active clones

idea: clone may emerge, but their holder will never use them without revealing that there is
clone

two examples:

1. failstop signatures

2. commitments

17

Failstop signatures

Domain Parameters and Keys:

− Gq – a group of a prime order q such that DLP is hard in Gq

− g, h∈Gq be such that nobody should know loggh

− one-time secret SK=(x1, x2, y1, y2)

− one-time public key PK=(gx1hx2, gy1hy2)

18

Failstop one-time signature

• Sign(SK, m)= (σ1(SK,m), σ2(SK,m)) where

• σ1(SK,m)= x1+m · y1mod q

σ2(SK,m)= x2+m · y2mod q

Failstop signature verification

if PK=(p1, p2) then the signature is valid iff

p1 · p2
m= gσ1 ·hσ2

19

Security concept

− there are q solutions for σ1, σ2

− an adversary breaking p1, p2 may have valid keys, can use them, but then the legitimate
user can derive loggh

20

Commitment to ephemeral values

• signature i contains a commitment to rnext= gknext used in the next signature. E.g., the
signature is over M ||Hash(rnext) instead of M

• the next signature uses r= rnext

• in order to remember rnext one can design a scheme where ri= gki where

ki8 Hash(x, i) and x is an extra key (as for EdDSA signatures)

Situation:

− the ith signature created by a clone and the ith signature created by the original device
- use the same ki

− the same ki for different messages ⇒ secret key gets exposed

− so: using a clone reveals the fact that the key is compromised

21

