copyright: Mirosław Kutyłowski, Politechnika Wrocławska

Security and Cryptography 2022

Mirosław Kutyłowski

VI. CLONE DETECTION and AVOIDANCE

problem: a hardware token executing cryptographic protocol can be cloned once the attacker gets access to the internal state of the token with all secrets

Strategies

- no secrets in full control of one party/device (e.g.: distributed generation of keys)
- making clones useless (rapid changes and synchronization)
- immediate detection of active clones

Distributed key generation

- split responsibility for the key quality, at least 2 parties involved
- result:
 - i. one party learns the key
 - ii. 2 parties share a key, but nobody has the entire key

Easy case - DL based systems

Goal: prevent the device A to choose a weak key (for the manufacturer)

(it may be a weakness installed by the manufacturer)

- 1. device A sends $X_0 = g^{x_0}$ to user B
- 2. user B sends x_1 to device A
- 3. A creates the secret key $x_0 \cdot x_1$, the public key is $PK = X_0^{x_1}$
- 4. B can recompute PK and check that it is correct

Easy case - DL based systems

Goal: splitting the key between devices A and B

(nobody has control over the full key)

- 1. device A sends $X_0 = g^{x_0}$ to device B
- 2. device B sends $X_1 = g^{x_1}$ to device A
- 3. A holds the share x_0 and the public key $PK = X_0 \cdot X_1$
- 4. *B* holds the share x_1 and the public key $PK = X_0 \cdot X_1$

Distributed generation of a Schnorr signature

- 1. A chooses k_A at random, computes $r_A = g^{k_A}$ and sends r_A to B
- 2. B chooses k_B at random, computes $r_B = g^{k_B}$ and sends r_B to A
- 3. A and B compute $e := \text{Hash}(M, r_A \cdot r_B)$
- 4. A computes and outputs $s_A := k_A e \cdot x_0 \mod q$
- 5. *B* computes and outputs $s_B := k_B e \cdot x_1 \mod q$
- 6. one can compute $s := s_A + s_B \mod q$ and output (s, e) a signature of M corresponding to key $PK = X_0 \cdot X_1$

Hard case - RSA

necessary to derive 2 prime numbers so that neither A nor B knows any of these primes

trick (from Estonian ID cards)

use 4K-bit numbers that have 4 prime factors instead of 2

observation: the same algebra as for the original RSA show that if

 $e \cdot d = 1 \mod \dots$

then

 $(m^d)^e = m \mod n$

Smart ID key generation

1. App generates a 2048-bit RSA key pair with the private key (n_1, d_1) and public key (n_1, e)

- 2. App chooses d'_1 at random
- 3. App computes $d_1'' = d_1 d_1'$
- 4. App encrypts d'_1 with its PIN, stores the ciphertext and deletes its plaintext
- 5. App deletes plaintext of d_1 (and information leading to factors of n_1)
- 6. App sends n_1, e, d_1'' to SecureZone
- 7. SecureZone generates the 2048-bit RSA key pair with private key (n_2, d_2) for public key (n_2, e)
- 8. SecureZone computes α, β so that

$$\alpha \cdot n_1 + \beta \cdot n_2 = 1$$

(Euclidean algorithm for integers, it works as n_1 and n_2 are coprime whp). 9. SecureZone computes the user's public modulus $n = n_1 \cdot n_2$ **public key of a user is** (n, e)

Distributed "RSA" signature generation for M

- 1. App asks for the PIN and decrypts the ciphertext of d'_1
- 2. App computes m encoding of M
- 3. App computes $s'_1 := m^{d'_1} \mod n_1$ and sends it to Smart-ID Server
- 4. Smart-ID Server computes m encoding of M
- 5. Smart-ID Server computes $s_1'' = m^{d_1''} \mod n_1$
- 6. Smart-ID Server computes $s_1 = s'_1 \cdot s''_1 \mod n$ (so $s_1 = m^{d_1} \mod n_1$)
- 7. Smart-ID Server computes $s_2 = m^{d_2} \mod n_2$
- 8. Smart-ID Server computes

 $S := \beta \cdot n_2 \cdot s_1 + \alpha \cdot n_1 \cdot s_2 \mod n$

(by ChRT to get S such that $S = s_1 \mod n_1$ and $S = s_2 \mod n_2$ output: signature S

Verification

as for RSA: checking that $S^e = m \mod n$

 $S^e = m \mod n$ iff $S^e = m \mod n_1 \land S^e = m \mod n_2$

 $s_1^e = m \mod n_1 \quad \land \quad s_2^e = m \mod n_2$

 $(m^{d_1})^e = m \mod n_1 \quad \wedge \quad (m^{d_2})^e = m \mod n_2$

Security concept

in order to create a signature alone:

- App would need to create $m^{d_2} \mod n_2$ impossible if the original RSA signature is unforgeable
- Smart-ID server would need to create $m^{d_1} \mod n_1$. It knows n_1 but the exponent d''_1 is random, so cannot help to forge an RSA signature for modulus e

Conclusion

distributing private key can work

whereas an adversary can typically clone at most one device

Clone detection concepts

- 1. hide invissible characteristics in the device that may be used to fish out clone's signatures post factum
- 2. discourage to use clones: key compromise in case of clone usage
- 3. fluctuation of distributed key

Key fluctuation

works for RSA, EdDSA, Schnorr, ...

fluctuation (example for plain RSA)

- App holds d_1 , Server holds d_2
- signature creation:
 - i. an integer Δ is negotiated
 - ii. App updates: $d_1 := d_1 \Delta$
 - iii. Server updates $d_2 := d_2 + \Delta$

(computations over integers, as the group order is unknown)

Security concept of key fluctuation

- App and Server must be synchronized
- If App₁ and App₂ are clones, then App₁ de-synchronizes App₂: if it attempts to sign, then the signature will be invalid and the Server will notice the problem

Tokens - example Smart-ID

Clone detection works thatnks to the following nonce (original Estonian description):

one-time password – created by Smart-ID Core in the end of each operation (incl. initialization) and valid until the completion of next.

retransmit nonce – created in the beginning of each operation by Smart-ID App, the same value must be used when Smart-ID App retries messages to Smart-ID Core, related to the same operation.

freshness token – created by Smart-ID Core before each submission operation from Smart-ID App to Smart-ID Core. Ensures that state-changing operations get executed in the order client issued them (although some may be missing from between).

Linking – microTESLA ...

at session k:

i. A chooses R at random, $R' := \operatorname{Hash}(R)$ (or an HMAC of R is MAC key shared)

ii. A attaches R' to the current transmission

at session k+1:

i. A authenticates himself with R

 \Rightarrow if at some moment a clone is created and does not hijack synchronization with the server, then it is useless

Detection of active clones

idea: clone may emerge, but their holder will never use them without revealing that there is clone

two examples:

- 1. failstop signatures
- 2. commitments

Failstop signatures

Domain Parameters and Keys:

- G_q a group of a prime order q such that DLP is hard in G_q
- $-g, h \in G_q$ be such that nobody should know $\log_g h$
- one-time secret $SK = (x_1, x_2, y_1, y_2)$
- one-time public key $PK = (g^{x_1}h^{x_2}, g^{y_1}h^{y_2})$

Failstop one-time signature

- $\operatorname{Sign}(\operatorname{SK}, m) = (\sigma_1(\operatorname{SK}, m), \sigma_2(\operatorname{SK}, m))$ where
- $\sigma_1(SK, m) = x_1 + m \cdot y_1 \mod q$

 $\sigma_2(SK, m) = x_2 + m \cdot y_2 \mod q$

Failstop signature verification

if $PK = (p_1, p_2)$ then the signature is valid iff

 $p_1 \cdot p_2^m = g^{\sigma_1} \cdot h^{\sigma_2}$

Security concept

- there are q solutions for σ_1, σ_2
- an adversary breaking p_1, p_2 may have valid keys, can use them, but then the legitimate user can derive $\log_g h$

Commitment to ephemeral values

- signature *i* contains a commitment to $r_{\text{next}} = g^{k_{\text{next}}}$ used in the next signature. E.g., the signature is over $M || \text{Hash}(r_{\text{next}})$ instead of M
- the next signature uses $r = r_{\text{next}}$
- in order to remember r_{next} one can design a scheme where $r_i = g^{k_i}$ where $k_i := \text{Hash}(x, i)$ and x is an extra key (as for EdDSA signatures)

Situation:

- the *i*th signature created by a clone and the *i*th signature created by the original device - use the same k_i
- the same k_i for different messages \Rightarrow secret key gets exposed
- so: using a clone reveals the fact that the key is compromised