copyright: Mirostaw Kutytowski, Politechnika Wroctawska

Security and Cryptography 2022
Mirostaw Kutytowski

VI. CLONE DETECTION and AVOIDANCE

problem: a hardware token executing cryptographic protocol can be cloned once the attacker
gets access to the internal state of the token with all secrets

Strategies

e no secrets in full control of one party/device (e.g.: distributed generation of keys)
e making clones useless (rapid changes and synchronization)

e immediate detection of active clones

RSA w=py

Distributed key generation Szc,veﬁ \/sz
dn& ™ 4
A S

split responsibility for the key quality, at least 2 parties involved

e result:

ii. 2 parties share a key, but nobody has the entire key

Eel =

3,
%Qe,\ : (\ZSAL‘MS }QM6A> Né‘\,\

= b
Xo Q
Easy case — DL based systems % =)

DH based procedure: Vg \AA
1. device A sends Xy = g to device B V<: X (é—_—

2. device B sends X; = g*! to device A

3. A responds with 2y (maybe encrypted with K = Hash(X/{"))

4. B computes the public key K = X7° and the private key z: =z 1,

5. A can check that the resulting key is K but has no knowledge about x

A version where A and B keep key shares, respectively, = and z;

N .
\(sQ\'\)\'\:\x% Y SeLry

S
@K: &
8
gK /7 1
>,
/‘lr % vo-vao—~
‘%,\—— (f&\'\én—- &
S 4 ...ﬁ"; %L:% -
L
K
L&D S g
= X, X A

A%%V‘Q S\»«JV\‘. o4 6%' St %\4 tuyel
— 1 wse Abr Ddodidsin

61 (O |\ A 9"\
P, P, P,

Pa_ C,:\c\) hat Ve

Hard case — RSA

necessary to derive 2 prime numbers so that neither A nor B knows any of these primes
trick (from Estonian ID cards)
use 4K-bit numbers that have 4 prime factors instead of 2

observation: the same algebra as for the original RSA show that if

(m*)e= dj ’QY&GHL) e

then

n = (()«, %) . PQE -

A N ed-4 =0 “d p

wWh, 1> hew fo- R4 7

—

L —

N = o3 Dy leME<S\;-°>

oWz \p@‘f’«'\) l,uuwb\)§ &o | V2N
e_\f@"Sﬂ/ﬁ;

e d =4 A (D)

P,‘—;(D CeCwe Cone

Smart ID key generation

1. App generates a 2048-bit RSA key pair with the private key (n,d;) and public key (11, ¢)
2. App chooses d| at random dz| - 'C‘Z (= L l -
3. App computes df =d; — d; 1 2
4. App encrypts dj with its PIN, stores the ciphertext and deletes its plaintext

[-5. App deletes plaintext of d; (and information leading to factors of n)
6. App sends nq,e,d] to SecureZone

7. SecureZone generates the 2048-bit RSA key pair with private key (nsg, ds) for public key
(n27 6)

8. SecureZone computes «, [so that
a-ni+ B-ne=1

(Euclidean algorithm for integers, it works as n; and ns are coprime whp).
9. SecureZone computes the user's public modulus n=n4 - ns

public key of a user is (n,e)

distributed “RSA"” signature generation for M

15
App asks for the PIN and decrypts the ciphertext of dj
. App computes m - encoding of M

. App computes s;:=m%modn and sends it to Smart-ID Server

2
3
4. Smart-ID Server computes m - encoding of M
5. Smart-ID Server computes s/ =m% mod n;

6

. Smart-ID Server computes s, =s5/-s/modn
1°51

(so [s = m™mod n;)

7. Smart-ID Server computes ss = m%mod ns

8. Smart-ID Server computes

LT
S:=0-ng-S1+a-ny-syomodn

(by ChRT to get S such that 'S’ = symodn; and 'S = ssmod ny

output: signature S

Nty

Verification

as for RSA: checking that S¢=m modn
Se=m-mod =i SE = virmod-ag e e i S S =Tr-mod 15
si=mmodn; A s5=m modns

(m#)e=mmodn; A (m%)°=m modn

Security concept

in order to create a signature alone:

e App would need to create m%mod n, — impossible if the original RSA signature is
unforgeable

e Smart-ID server would need to create m?mod n;. It knows n; but the exponent d/ is
random, so cannot help to forge an RSA signature for modulus e

Conclusion
distributing private key can work

whereas an adversary can typically clone at most one device

Clone detection concepts

1. hide invissible characteristics in the device that may be used to fish out clone’s signatures
post factum

2. discourage to use clones: key compromise in case of clone usage

3. fluctuation of distributed key

10

Key fluctuation

works for RSA, EdADSA, Schnorr, ...

fluctuation (example for plain RSA) d — A 1 0\
e hod...
e L

— App holds d;, Server holds d5

~ signature creation: (3/‘_ A > e (EL?.'L' [S>:;

I. an integer A is negotiated
ii. App updates: d;:=d; — A = Cl —\—& :Cl
-

li. Server updates dy:=ds + A

(computations over integers, as the group order is unknown)

11

Security concept of key fluctuation

e App and Server must be synchronized

e If App; and App; are clones, then App; de-synchronizes App,:if it attempts to sign, then

the signature will be invalid and the Server will notice the problem

Do < \one_ Qevver—
\
@)

S

: 8,

Tokens - example Smart-ID
Clone detection works thatnks to the following nonce (original Estonian description):

one-time password — created by Smart-ID Core in the end of each operation (incl. initial-
ization) and valid until the completion of next.

retransmit nonce — created in the beginning of each operation by Smart-ID App, the same
value must be used when Smart-1D App retries messages to Smart-ID Core, related to the
same operation.

freshness token — created by Smart-ID Core before each submission operation from Smart-
ID App to Smart-ID Core. Ensures that state-changing operations get executed in the order
client issued them (although some may be missing from between).

13

Linking — microTESLA ...

at session k:
i. A chooses R at random, R’:=Hash(R) (or an HMAC of R is MAC key shared)
ii. A attaches R’ to the current transmission

at session k + 1:
I. A authenticates himself with R

— if at some moment a clone is created and does not hijack synchronization with the server,
then it is useless

14

Detection of active clones

idea: clone may emerge, but their holder will never use them without revealing that there is
clone

two examples:
1. failstop signatures

2. commitments

15

Failstop signatures

Domain Parameters and Keys:

— (G, — a group of a prime order ¢ such that DLP is hard in GG,

— g,hed, be such that nobody should know log,h h= HG'SL!QS S >
— one-time secret SK = (21, 2, y1, Y2)

— one-time public key PK = (g™ h"2, g¥1h¥2)

16

' /
T bE o 2
1 2 1 2
3= A
\
Failstop one-time signature DT‘—OZ Q]“ <,

e Sign(SK,m)=(01(SK,m),52(SK,m)) where

)
—D- I
o\ 01(SK,m) =21+ m[yithod g L\; 4/(62_ 7—)
v '/): 3
go(SK, m) =xo+m; od ¢
o

Failstop signature verification

if PK = (py, p2) then the signature is valid iff

= L C,
DrEpyi—g s) M

W PR o+
e Al e e

17

Security concept

2

— there are ¢ solutions for oy, 0

— an adversary breaking p1, p» may have valid keys, can use them, but then the legitimate
user can derive log,h

18

2.3

Commitment to ephemeral values

e signature ¢ contains a commitment to 7 = gt used in the next signature. E.g., the
signature is over M ||Hash(7pext) instead of M

e the next signature uses 7 = ext
e in order to remember 7, one can design a scheme where r;, = ¢ where

k;:=Hash(z,i) and x is an extra key (as for EdDSA signatures)

Situation:

— the ith signature created by a clone and the ith signature created by the original device
- use the same k;

— the same k; for different messages = secret key gets exposed

— so: using a clone reveals the fact that the key is compromised

19

