
copyright: Mirosław Kutyłowski, Politechnika Wrocławska

Security and Cryptography 2022

IV. Cache Attacks

Mirosław Kutyłowski

1

Cache attacks against a process

• side channel attack via measuring time

• same mechanism as for Meltdown: detecting cache misses indicates some particular exe-
cution pattern

Example: “Cache Missing for fun and profit” by Colin Percival

goal: find the RSA private key from OpenSSL executed on Pentium4 (original attack)

2

practical issues about cache:

− if there is a victim thread and a spy thread, then in the time between switching victim to
spy the whole L1 can be evicted anyway as it is small

− L1: is very fast, time differences between a hit and miss and fetching from L2 are not
big, problematic time measuring with rdtsc by the spy thread

− instructions are not loaded into L1 as to L2, no noise of this kind in L1

− problems with hardware prefetcher: if a few cache misses occurs on subsequent addresses
then a few cache line fetched “just for the case” – so the spy process inspecting cache
cannot ignore it

− TLB (translation lookaside buffer) influences miss time as well, TLB does not cover
whole L2

3

OpenSSL RSA implementation

• Chinese Remainder Theorem (CRT) used:

− instead of computing ad modn, where n= p · q

− one computes ad mod p and ad mod q and combines the results according to CRT

− so: substantial speedup due to operations on smaller numbers

• sliding window exponentiation method

− precomputed values: a3, a5,� , a31mod p

− ”square and multiply” method: a series of squarings x� x2mod p,and multiplications
x: =x · a2k+1

− squaring and multiplication use different algorithms with different “footprints” left in
the cache

− footprint also indicates approximately k from x: =x · a2k+1

4

5

Remark

• libraries often guard against such problems – no subroutines with variable time

• .. but frequently not the case:

− example: the public key not stored but only encrypted secret key, then public key is
recomputed (ECDSA)

− computation must be based on exponentiation, where the exponent is the secret

so: a potential point of leakage via cache timings if sliding window used

6

Secure processing in a Data Center

• multiprocess architectures, with strict separation between processes offered by the system:
hypervisor and virtualization, sandboxing, ...

• an attacker process tries to get secrets from victim processes without having any
priviledges

− theoretically virtualization solves the problem

• despite separation protection the processes share cache

• there is a strict control over the cache content but cache hits and cache misses might
be detected by timing for the attacker’s process (and not of the victim process)

• the timing for cache access should somehow depend on the sensitive information to be
retreived

• difficulty: other than in the classical cryptanalysis – access to plaintext or ciphertext might
be impossible (they belong to the victim process) - the attacker can only guess something

7

CASE STUDY: AES encryption

AES software implementation:

• particularly vulnerable because of its design

• AES defined in algebraic terms, but lookup table is typically faster

• there are arguments against algebraic implementations as the execution time may provide
a side channel

• key expansion: round zero: simply the key bytes directly, other rounds: key expansion
reversable (details irrelevant for the attack)

• fast implementation based on lookup tables T0, T1, T2, T3 and T0
(10)

, T1
(10)

, T2
(10)

, T3
(10) for

the last round (with no MixColumns)

8

• round operation

�

x0
(r+1)

, x1
(r+1)

, x2
(r+1)

, x3
(r+1)

�

� T0(x0
r)⊕T1(x5

r)⊕ T2(x10
r)⊕T3(x15

r)⊕K0
(r+1)

�

x4
(r+1)

, x5
(r+1)

, x6
(r+1)

, x7
(r+1)

�

� T0(x4
r)⊕T1(x9

r)⊕ T2(x14
r)⊕T3(x3

r)⊕K1
(r+1)

�

x8
(r+1)

, x9
(r+1)

, x
10

(r+1)
, x

11

(r+1)
�

� T0(x8
r)⊕T1(x13

r)⊕T2(x2
r)⊕T3(x7

r)⊕K2
(r+1)

�

x
12

(r+1)
, x

13

(r+1)
, x

14

(r+1)
, x

15

(r+1)
�

� T0(x12
r)⊕T1(x1

r)⊕T2(x6
r)⊕T3(x11

r)⊕K3
(r+1)

9

attack notation:

− δ = B/entrysize of lookup table, typically: entrysize=4bytes, δ = 16, (so δ entries of a
lookup table are within the same cache line – this is a complication for the attack!)

− for a byte y let hyi= ⌊y/δ⌋, it indicates a memory block of y in Tl

− if hyi = hzi, then x and y correspond to requests to the same memory block of the
lookup table and therefore to the same cache line

− QK(p, l, y)= 1 iff AES encryption of plaintext p under key K accesses memory block of
index y in Tl at least once in 10 rounds

− Mk(p, l, y) = measurement, its expected value is bigger when Qk(p, l, y) = 1 than in
case Qk(p, l, y)= 0

10

“synchronous attack”

− plaintext random but known, corresponds to the situation where one can trigger
encryption (e.g. VPN with unknown key, dm-crypt of Linux)

− phase 1: measurements, phase 2: analysis

− from experiments: AES key recovered using 65 ms of measurements (800 writes) and 3
sec analysis

11

attack on round 1:

i. accessed indices for lookup tables are simply xi
(0)= pi⊕ ki for i=0,� , 15

ii. goal: find information hkii of ki – one cannot derive information on lsb; candidates

for ki are denoted by kī

iii. if hkii= hkīi and hyi= hpi⊕ kīi, then QK(p, l, y)= 1 for the lookup Tl

�

xi
(0)�

iv. if hkii� hkīi, then there is no lookup in block y for Tl during the 1st round, but

− there are 4 · 9− 1= 35 other accesses affected by other plaintext bits during the
entire encryption (4 per round, 9 rounds in total as the last round uses different
look-up tables)

− probability that none of them accesses block y for Tl is
�

1−
δ

256

�

35

≈ 0.104 for δ= 16

12

v. few dozens of samples required to find a right candidate for hkii

vi. together we determine log (256/δ)= 4 bits of each byte of the key

vii. nothing more possible for the 1st round, still 64 key bits to be found, too much for
brute force

viii. in reality more samples needed due to noise in measurements MK(p, l, y)

13

attack on round 2: the goal is to find the still unknown key bits

i. we exploit equations derived from the Rijndeal specification:

x2
(1)= s(p0⊕ k0)⊕ s(p5⊕ k5)⊕ 2•s(p10⊕ k10)⊕ 3•s(p15⊕ k15)⊕ s(k15)⊕ k2

x5
(1)= s(p4⊕ k4)⊕ 2•s(p9⊕ k9)⊕ 3•s(p14⊕ k14)⊕ s(p3⊕ k3)⊕ s(k14)⊕ k1⊕ k5

...

x8
(1)=� .

...

x15

(1)=� .

where s stands for the Rijndael Sbox, and •means multiplication in the field with 256
elements

14

ii. lookup for T2

�

x2
(1)
�

:

x2
(1)= s(p0⊕ k0)⊕ s(p5⊕ k5)⊕ 2•s(p10⊕ k10)⊕ 3•s(p15⊕ k15)⊕ s(k15)⊕ k2

− hk0i, hk5i, hk10i, hk15i, hk2i already known

− low level bits of hk2i influence only low bits of x2
(1) so not important for cache

access pattern

− the upper bits of x2
(1) can be determined after guessing low bits of k0, k5, k10, k15:

there are δ4 possibilities (=164)

− a correct guess yields a lookup in the right place

− an incorrect guess: some ki� kī so

x2
(1)⊕ x̄2

(1)= ci•s(pi⊕ ki)⊕ ci•s(pi⊕ k̄i)⊕�

where ... depends on different random plaintext bits and therefore random

15

− differential properties of AES studied for AES competition:

Pr [ci•s(pi⊕ ki)⊕ ci•s(pi⊕ k̄i)� z]>
�

1−
δ

256

�

3

so the false positive for lookup in T2 at a given block:

−
�

1−
δ

256

�

3
for not computing T2

�

x2
(1)
�

−
�

1−
δ

256

�

for not refering to the same cache line as T2

�

x2
(1)
�

while computing

each of the remaining invocations of T2

− together no access with pbb about
�

1−
δ

256

�

38

− this yields about 2056 samples necessary to eliminate all wrong candidates

− it must be repeated 3 more times to get other nibbles of key bytes

iii. optimization: guess Δ=ki⊕kj and take pi⊕ pj=Δ, then i.e. s(p0⊕k0)⊕ s(p5⊕k5)

cancels out and we have to guess less bits (4 instead of 8)

16

− similar attack: last round - created ciphertext must be known to the attacker, oth-
erwise similar. Subkey from the last round learnt, but key schedule is reversible

cache measurement strategy: Evict+Time

i. procedure:

1. trigger encryption of a plaintext p

2. evict: access memory addresses so that one cache set overwritten completely

3. trigger encryption of the plaintext p

ii. in the evicted cache set one cache line from Tl is missing

iii. measure time: if long, then cache miss and the encryption refers to evicted δ positions
from the lookup table

iv. practical problem: triggering may invoke other activities and timing is not precise

17

− measurement: Prime+Probe

i. procedure

1. prime: overwrite entire cache by reading A: a contiguous memory of the size
of the cache

2. trigger an encryption of p – it results in eviction at places where lookup has
occurred

3. probe: read memory addresses of A and detect which locations have been
evicted

ii. easier: probe timing checked, not the time at encryption

18

− complications in practice:

i. address of lookup tables in the memory - how they are loaded to the cache
remains unknown – offset can be found by considering all offsets and then statistics
for each offset (experiments show good results even in a noisy environment)

ii. hardware prefetcher may disturb the effects. Solution: read and write the addresses
of A according to a pseudorandom permutation

− practical experiments: e.g. Athlon 64, no knowledge of adresses mapping, 8000 encryp-
tions with Prime & Probe

Linux dm-crypt (disk, filesystem, file encryption): with knowledge of addressing, 800
encryptions (65 ms), 3 seconds analysis, full AES key

19

extensions of the attack:

− on some platforms timing shows also position of the cache line (better resolution for one-
round attack)

− remote attacks (VPN, IPSec): via requests that trigger immediate response (unclear
practicality)

20

“asynchronous attrack” on round 1

− no knowledge of plaintext, no knowledge of ciphertext

− based on frequency F of bytes in e.g. English texts, frequency score for each of
256

δ
blocks

of length δ

− F is nonuniform: most bytes have high nibble = 6 (lowercase characters “a” through “o”)

− find j such that j is particularly frequent indicates j=6⊕ hkii and shows hkii

− complication: this frequency concerns at the same time k0, k5, k10, k15 affecting T0 so we
learn 4 nibbles but not their actual allocation to k0, k5, k10, k15

− the number of bits learnt is roughly: 4 · (4 · 4− log4!)≈ 4 · (16− 3.17)≈ 51 bits

− experiment: OpenSSL, measurements 1 minute, 45.27 info bits o on the 128-bit key
gathered

21

Bernstein’s attack

− an alternative way of computing AES, algorithm applied in OpenSSL:

→ two constant 256-byte tables: S and S ′

→ expanded to 1024-byte tables T0, T1, T2, T3

T0[b] = (S ′[b], S[b], S[b], S[b]⊕S ′[b])

T1[b] = (S[b]⊕S ′[b], S ′[b], S[b], S[b])

� .

→ AES works with 16-byte arrrays x and y, where x initialized with the key k, y initialized
with p⊕ k, where p is the plaintext

22

→ AES computation = modifications of x and y:

i. x viewed as (x0, x1, x2, x3) (4 bytes parts)

ii. e� (S[x3(1)⊕ 1], S[x3(2)], S[x3(3)], S[x3(0)])

iii. replace (x0, x1, x2, x3)with (e⊕x0, e⊕x0⊕x1, e⊕x0⊕x1⊕x2, e⊕x1⊕x2⊕x3)

iv. replace y=(y0, y1, y2, y3) with

(T0[y0[0]]⊕T1[y1[1]]⊕T2[y2[2]]⊕T3[y3[3]]⊕ x0,

(T0[y1[0]]⊕T1[y2[1]]⊕T2[y3[2]]⊕T3[y0[3]]⊕ x1,

(T0[y2[0]]⊕T1[y3[1]]⊕T2[y0[2]]⊕T3[y1[3]]⊕ x2,

(T0[y3[0]]⊕T1[y0[1]]⊕T2[y1[2]]⊕T3[y2[3]]⊕ x3

v. 2nd round uses ⊕2 instead of ⊕1 for x, otherwise the same. Similar changes
corresponding to rounds up to 9

vi. in round 10 use S[], S[], S[], S[] instead of T ′s

vii. y is the final output

23

it is embarassing how simple the attack is:

→ it has been checked in practice that execution depends on k[i] ⊕ p[i] - which is a
position in the table:

− try many plaintexts p

− collect statistics for each byte for p[13]

− the maximum occurs for z

− the maximum corresponds to a fixed value for k[13]⊕ p[13], say c

− compute k[13] = c⊕ z

→ for different bytes different statistics observed: for some t a few values k[t] ⊕
plaintext[t], where substantially higher time observed

→ statistic gathered, different packet lengths

→ finally brute force checking all possibilites

24

Countermeasures

• ”no reliable and practical countermeasure” so far

• implementation based on no-lookup: instead algebraic algorithm (slow!!!) or bitslice
implementation (sometimes possible and nearly as efficient as lookup)

• alternative lookup tables: if smaller, then smaller leakage (but easier cryptanalysis for
small Sboxes)

• data-independent access to memory blocks - every lookup causes a redundant read
in all memory blocks, generally: oblivious computation possible theoretically, but overhead
makes it inattractive

• masking operations: ≈“we are not aware of any method that helps to resist our attack”

• cache state normalization: load all lookup tables - equires deep changes in OS and
reduces efficiency, even then LRU cache policy may leak information which part has been
used!

• process blocking: again, deep changes in OS

• disable cache sharing: deep degradation of performance

25

• ”no-fill” mode during crypto operations:

− preload lookup tables

− activate “no-fill”

− crypto operation

− deactivate “no-fill”

the first two steps are critical and no other process is allowed to run

possible only in priviledged mode, cost of operation prohibitive

• dynamic table storage: e.g. many copies of each table, or permute tables

details architecture dependent and might be costly

• hiding timing information: adding random values to timing makes the statistical
analysis harder but still feasible

• protect some rounds (the first 2 and the last one) with any mean – but may be there
are other attack techniques...

26

• cryptographic services at system level: good but not flexible

• sensitive status for user processes: erasing all data when interrupt

• specialized hardware support: crypto co-processor seems to be the best choice

but the problem is not limited to AES or crypto – many sensitive data operations are not
cryptographic and a coprocessor does not help

27

