copyright: Mirosław Kutyłowski, Politechnika Wrocławska

Security and Cryptography 2022

IV. Cache Attacks

Mirosław Kutyłowski

1

Cache attacks against a process

- side channel attack via measuring time
- same mechanism as for Meltdown: detecting cache misses indicates some particular execution pattern

Example: "Cache Missing for fun and profit" by Colin Percival goal: find the RSA private key from OpenSSL executed on Pentium4 (original attack)

practical issues about cache:

- − if there is a victim thread and a spy thread, then in the time between switching victim to spy the whole L1 can be evicted anyway as it is small
- − L1: is very fast, time differences between a hit and miss and fetching from L2 are not big, problematic time measuring with rdtsc by the spy thread
- − instructions are not loaded into L1 as to L2, no noise of this kind in L1
- **problems with hardware prefetcher: if a few cache misses occurs on subsequent addresses** then a few cache line fetched "just for the case" $-$ so the spy process inspecting cache cannot ignore it
- − TLB (translation lookaside buffer) influences miss time as well, TLB does not cover whole 12

OpenSSL RSA implementation

- Chinese Remainder Theorem (CRT) used:
	- instead of computing $a^d \bmod n$, where $n = p \cdot q$
	- one computes $a^d \bmod p$ and $a^d \bmod q$ and combines the results according to CRT
	- − so: substantial speedup due to operations on smaller numbers
- sliding window exponentiation method
	- \blacksquare precomputed values: $a^3, a^5, ..., a^{31} \text{mod } p$
	- "square and multiply" method: a series of squarings $x := x^2 \mod p$, and multiplications $x:=x\cdot a^{2k+1}$
	- − squaring and multiplication use different algorithms with different "footprints" left in the cache
	- $-$ footprint also indicates approximately k from $x:=x\cdot a^{2k+1}$

 $a^{1}a^{2}a^{3}$

Austria: 7 CRT

Remark

- libraries often guard against such problems no subroutines with variable time
- .. but frequently not the case:
	- example: the public key not stored but only encrypted secret key, then public key is recomputed (ECDSA)
	- − computation must be based on exponentiation, where the exponent is the secret
		- so: a potential point of leakage via cache timings if sliding window used

Secure processing in a Data Center

- multiprocess architectures, with strict separation between processes offered by the system: hypervisor and virtualization, sandboxing, ...
- an attacker process tries to get secrets from victim processes without having any priviledges
	- − theoretically virtualization solves the problem
- despite separation protection the processes share cache
- there is a strict control over the cache content but cache hits and cache misses might be detected by **timing for the attacker's process** (and not of the victim process)
- the timing for cache access should somehow depend on the sensitive information to be retreived
- difficulty: other than in the classical cryptanalysis access to plaintext or ciphertext might be impossible (they belong to the victim process) - the attacker can only guess something

CASE STUDY: AES encryption

AES software implementation:

- particularly vulnerable because of its design
- AES defined in algebraic terms, but lookup table is typically faster
- there are arguments against algebraic implementations as the execution time may provide a side channel
- key expansion: round zero: simply the key bytes directly, other rounds: key expansion reversable (details irrelevant for the attack)
- \bullet fast implementation based on lookup tables T_0,T_1,T_2,T_3 and $T_0^{(10)},T_1^{(10)},T_2^{(10)},T_3^{(10)}$ for the last round (with no MixColumns)

round operation

 $\left(x_0^{(r+1)}, x_1^{(r+1)}, x_2^{(r+1)}, x_3^{(r+1)}\right) := T_0(x_0^r) \oplus T_1(x_5^r) \oplus T_2(x_{10}^r) \oplus T_3(x_{15}^r) \oplus K_0^{(r+1)}$ $\left(x_4^{(r+1)}, x_5^{(r+1)}, x_6^{(r+1)}, x_7^{(r+1)}\right) = T_0(x_4^r) \oplus T_1(x_9^r) \oplus T_2(x_{14}^r) \oplus T_3(x_3^r) \oplus K_1^{(r+1)}$ $\left(x_8^{(r+1)}, x_9^{(r+1)}, x_{10}^{(r+1)}\right) := T_0(x_8^r) \oplus T_1(x_{13}^r) \oplus T_2(x_2^r) \oplus T_3(x_7^r) \oplus K_2^{(r+1)}$

 $\left(x_{12}^{(r+1)}, x_{13}^{(r+1)}, x_{14}^{(r+1)}, x_{15}^{(r+1)}\right) := T_0(x_{12}^r) \oplus T_1(x_1^r) \oplus T_2(x_6^r) \oplus T_3(x_{11}^r) \oplus K_3^{(r+1)}$

attack notation:

- $-\left(\delta \right)$ B/entrysize of lookup table, typically: entrysize=4bytes, $\delta = 16$, (so δ entries of a lookup table are within the same cache line – this is a complication for the attack!)
- − for a byte y let $\langle y \rangle = \lfloor y/\delta \rfloor$, it indicates a memory block of y in T_l
- $-$ if $(y) = \langle z \rangle$, then x and y correspond to requests to the same memory block of the lookup table and therefore to the same cache line
- $\int Q_K(p, l, y) = 1$ iff AES encryption of plaintext p under key K accesses memory block of index y in T_l at least once in 10 rounds

 $\big\|M_k(p, l, y)\big\|$ measurement, its expected value is bigger when $Q_k(p, l, y) = 1$ than in case $Q_k(p, l, y) = 0$

"synchronous attack"

- plaintext random but known, corresponds to the situation where one can trigger encryption (e.g. VPN with unknown key, dm-crypt of Linux)
- − phase 1: measurements, phase 2: analysis
- − from experiments: AES key recovered using 65 ms of measurements (800 writes) and 3 sec analysis

attack on round 1:

i. accessed indices for lookup tables are simply $x_i^{(0)} = p_i \oplus k_i$ for $i = 0, ..., 15$

- ii. goal: find information $\langle k_i \rangle$ of k_i one cannot derive information on lsb; candidates for k_i are denoted by $\bar{k_i}$
- iii. if $\ket{\{k_i\}} = \braket{\bar{k_i}}$ and $\braket{y} = \braket{p_i \oplus \bar{k_i}},$ then $Q_K(p, l, y)$ $=$ 1 for the lookup $T_l\big(x_i^{(0)}\big)$
- iv. if $\langle k_i \rangle \neq \langle \bar{k_i} \rangle$, then there is no lookup in block y for T_l during the 1st round, $\bm{\mathsf{but}}$
	- $-$ there are $4 \cdot 9 1 = 35$ other accesses affected by other plaintext bits during the entire encryption (4 per round, 9 rounds in total as the last round uses different look-up tables)
	- probability that none of them accesses block y for T_l is

 $\left(1-\frac{\delta}{256}\right)^{35} \approx 0.104$ for $\delta = 16$ 12

- v. few dozens of samples required to find a right candidate for $\langle k_i \rangle$
- vi. together we determine $\log(256/\delta) = 4$ bits of each byte of the key
- vii. nothing more possible for the 1st round, still 64 key bits to be found, too much for brute force
- viii. in reality more samples needed due to noise in measurements $M_K(p, l, y)$

 $P_0 = P_5 \oplus \Delta$ $k_0 = k_0 \Delta$

attack on round 2: the goal is to find the still unknown key bits

i. we exploit equations derived from the Rijndeal specification:

$$
x_2^{(1)} = s(p_0 \oplus k_0) \oplus s(p_5 \oplus k_5) \oplus 2 \bullet s(p_{10} \oplus k_{10}) \oplus 3 \bullet s(p_{15} \oplus k_{15}) \oplus s(k_{15}) \oplus k_2
$$

\n
$$
x_5^{(1)} = s(p_4 \oplus k_4) \oplus 2 \bullet s(p_9 \oplus k_9) \oplus 3 \bullet s(p_{14} \oplus k_{14}) \oplus s(p_3 \oplus k_3) \oplus s(k_{14}) \oplus k_1 \oplus k_5
$$

\n...
\n
$$
x_8^{(1)} = \dots
$$

 $x_{15}^{(1)} = \dots$

...

where s stands for the Rijndael Sbox, and \bullet means multiplication in the field with 256 elements

ii. lookup for $T_2\!\left(x_2^{(1)}\right)$:

 $x_2^{(1)} = s(p_0 \oplus k_0) \oplus s(p_5 \oplus k_5) \oplus 2 \bullet s(p_{10} \oplus k_{10}) \oplus 3 \bullet s(p_{15} \oplus k_{15}) \oplus s(k_{15}) \oplus k_2$

- $\langle k_0 \rangle, \langle k_5 \rangle, \langle k_{10} \rangle, \langle k_{15} \rangle, \langle k_2 \rangle$ already known
- $-$ low level bits of $\langle k_2 \rangle$ influence only low bits of $x_2^{(1)}$ so not important for cache access pattern
- $-$ the upper bits of $x_2^{(1)}$ can be determined after guessing low bits of k_0, k_5, k_{10}, k_{15} : there are δ^4 possibilities $(=\!16^4)$
- − a correct guess yields a lookup in the right place
- $-$ an incorrect guess: some $k_i \neq \bar{k_i}$ so

 $x_2^{(1)} \oplus \bar{x}_2^{(1)} \neq c_i \bullet s(p_i \oplus k_i) \oplus c_i \bullet s(p_i \oplus \bar{k_i}) \oplus ...$

where ... depends on different random plaintext bits and therefore random

− differential properties of AES studied for AES competition:

 $\Pr\left[c_i\bullet s(p_i\oplus k_i)\oplus c_i\bullet s(p_i\oplus \bar{k_i})\neq z\right] > \left(1-\frac{\delta}{256}\right)^3$

so the false positive for lookup in T_2 at a given block:

- $\left(1-\frac{\delta}{256}\right)^3$ for not computing $T_2\left(x_2^{(1)}\right)$
- $-\quad \left(1-\frac{\delta}{256}\right)$ for not refering to the same cache line as $T_2\!\left(x_2^{(1)}\right)$ while computing each of the remaining invocations of T_2

− together no access with pbb about $\left(1-\frac{\delta}{256}\right)^{38}$

- − this yields about 2056 samples necessary to eliminate all wrong candidates
- it must be repeated 3 more times to get other nibbles of key bytes

iii. optimization: guess $\Delta = k_i \oplus k_j$ and take $p_i \oplus p_j = \Delta$, then i.e. $s(p_0 \oplus k_0) \oplus s(p_5 \oplus k_5)$ cancels out and we have to guess less bits (4 instead of 8)

similar attack: last round - created ciphertext must be known to the attacker, otherwise similar. Subkey from the last round learnt, but key schedule is reversible

cache measurement strategy: Evict+Time

i. procedure:

- 1. trigger encryption of a plaintext p
- 2. evict: access memory addresses so that one cache set overwritten completely
- 3. trigger encryption of the plaintext p
- ii. in the evicted cache set one cache line from T_l is missing
- iii. measure time: if long, then cache miss and the encryption refers to evicted δ positions from the lookup table
- iv. practical problem: triggering may invoke other activities and timing is not precise

− measurement: Prime+Probe

i. procedure

- 1. **prime:** overwrite entire cache by reading A : a contiguous memory of the size of the cache
- 2. trigger an encryption of $p it$ results in eviction at places where lookup has occurred
- 3. probe: read memory addresses of A and detect which locations have been evicted
- ii. easier: probe timing checked, not the time at encryption

- complications in practice:
	- i. address of lookup tables in the memory how they are loaded to the cache remains unknown – offset can be found by considering all offsets and then statistics for each offset (experiments show good results even in a noisy environment)

ii. hardware prefetcher may disturb the effects. Solution: read and write the addresses of A according to a pseudorandom permutation

practical experiments: e.g. Athlon 64, no knowledge of adresses mapping, 8000 encryptions with Prime & Probe

Linux dm-crypt (disk, filesystem, file encryption): with knowledge of addressing, 800 encryptions (65 ms), 3 seconds analysis, full AES key

extensions of the attack:

- − on some platforms timing shows also position of the cache line (better resolution for oneround attack)
- − remote attacks (VPN, IPSec): via requests that trigger immediate response (unclear practicality)

"asynchronous attrack" on round 1

- no knowledge of plaintext, no knowledge of ciphertext
- $−$ based on frequency F of bytes in e.g. English texts, frequency score for each of $\frac{256}{\delta}$ blocks of length δ
- $-F$ is nonuniform: most bytes have high nibble = 6 (lowercase characters "a" through "o")
- find j such that j is particularly frequent indicates $j = 6 \oplus \langle k_i \rangle$ and shows $\langle k_i \rangle$
- complication: this frequency concerns at the same time k_0 , k_5 , k_{10} , k_{15} affecting T_0 so we learn 4 nibbles but not their actual allocation to k_0 , k_5 , k_{10} , k_{15}
- the number of bits learnt is roughly: $4 \cdot (4 \cdot 4 \log 4!) \approx 4 \cdot (16 3.17) \approx 51$ bits
- experiment: OpenSSL, measurements 1 minute, 45.27 info bits o on the 128-bit key gathered

Bernstein's attack

with the community

- − an alternative way of computing AES, algorithm applied in OpenSSL:
	- \rightarrow two constant 256-byte tables: S and S'
	- \rightarrow expanded to 1024-byte tables T_0 , T_1 , T_2 , T_3

 $T_0[b] = (S'[b], S[b], S[b], S[b] \oplus S'[b])$

 $T_1[b] = (S[b] \oplus S'[b], S'[b], S[b], S[b])$

 \rightarrow AES works with 16-byte arrrays x and y, where x initialized with the key k, y initialized with $p \oplus k$, where p is the plaintext

 \rightarrow AES computation = modifications of x and y:

i. x viewed as (x_0, x_1, x_2, x_3) (4 bytes parts)

ii. $e := (S[x_3(1) \oplus 1], S[x_3(2)], S[x_3(3)], S[x_3(0)])$

iii. replace (x_0, x_1, x_2, x_3) with $(e \oplus x_0, e \oplus x_0 \oplus x_1, e \oplus x_0 \oplus x_1 \oplus x_2, e \oplus x_1 \oplus x_2 \oplus x_3)$

iv. replace $y = (y_0, y_1, y_2, y_3)$ with

 $(T_0[y_0[0]] \oplus T_1[y_1[1]] \oplus T_2[y_2[2]] \oplus T_3[y_3[3]] \oplus x_0,$

 $(T_0[y_1[0]] \oplus T_1[y_2[1]] \oplus T_2[y_3[2]] \oplus T_3[y_0[3]] \oplus x_1,$

 $(T_0[y_2[0]] \oplus T_1[y_3[1]] \oplus T_2[y_0[2]] \oplus T_3[y_1[3]] \oplus x_2,$

 $(T_0[y_3[0]] \oplus T_1[y_0[1]] \oplus T_2[y_1[2]] \oplus T_3[y_2[3]] \oplus x_3$

v. 2nd round uses $\oplus 2$ instead of $\oplus 1$ for x, otherwise the same. Similar changes corresponding to rounds up to 9

vi. in round 10 use $S[], S[], S[], S[]$ instead of $T^{\prime}s$

vii. y is the final output

it is embarassing how simple the attack is:

- \rightarrow it has been checked in practice that execution depends on $k[i] \oplus p[i]$ which is a position in the table:
	- $-$ try many plaintexts p
	- $-$ collect statistics for each byte for $p[13]$
	- $-$ the maximum occurs for z
	- − the maximum corresponds to a fixed value for $k[13] \oplus p[13]$, say c
	- − compute $k[13] = c \oplus z$
- \rightarrow for different bytes different statistics observed: for some t a few values $k[t] \oplus$ $plaintext[t]$, where substantially higher time observed
- \rightarrow statistic gathered, different packet lengths
- \rightarrow finally brute force checking all possibilites

Countermeasures

- "no reliable and practical countermeasure" so far
- implementation based on no-lookup: instead algebraic algorithm (slow!!!) or bitslice implementation (sometimes possible and nearly as efficient as lookup)
- alternative lookup tables: if smaller, then smaller leakage (but easier cryptanalysis for small Sboxes)
- data-independent access to memory blocks every lookup causes a redundant read in all memory blocks, generally: oblivious computation possible theoretically, but overhead makes it inattractive
	- masking operations: ≈"we are not aware of any method that helps to resist our attack"
	- cache state normalization: load all lookup tables equires deep changes in OS and reduces efficiency, even then LRU cache policy may leak information which part has been used!
	- process blocking: again, deep changes in OS
	- disable cache sharing: deep degradation of performance
- no-fill" mode during crypto operations:
	- preload lookup tables
	- activate "no-fill"
	- crypto operation
	- − deactivate "no-fill"

the first two steps are critical and no other process is allowed to run possible only in priviledged mode, cost of operation prohibitive

dynamic table storage: e.g. many copies of each table, or permute tables

details architecture dependent and might be costly

- hiding timing information: adding random values to timing makes the statistical analysis harder but still feasible
- protect some rounds (the first 2 and the last one) with any mean but may be there are other attack techniques...

• cryptographic services at system level: good but not flexible

sensitive status for user processes: erasing all data when interrupt

specialized hardware support: crypto co-processor seems to be the best choice

but the problem is not limited to AES or crypto – many sensitive data operations are not cryptographic and a coprocessor does not help