copyright: Mirosław Kutyłowski, Politechnika Wrocławska

Security and Cryptography 2022 Mirosław Kutyłowski

XIII. WIFI

standards:

- evolution
- little interaction with academic community
- underspecified,
- sometimes not literally implemented, lack of documentation
- sometimes formal security proofs like for WPA, but nevertheless ... attacks

Krack against WPA2

- attack based on crypto assumption: "no IV used twice"
- works despite "provable security", but the proofs do not model all scenarios
- effects depend on particular implementation. Most cases:
 - decryption due to reuse of the same string in stream cipher
 - or just making mess by replay attack (e.g. against NTP- network time protocol)

4-way handshake

- "supplicant" = user, "authenticator" = Access Point
- PMK Pairwise Master Key is preshared
- PTK (Pairwise Transient Key) derived as a session key
- PTK=f(PMK, ANonce, SNonce), PTK splitted into TK (Temporal Key), KCK (Key Confirmation Key), KEK (Key Encryption Key)
- for WPA2 also GPK (Group Temporal Key) transported to the supplicant (used by AP for broadcast)

- frames: EAPOL consisting of
 - header determines which message it is in the handshake
 - replay counter used to detect replayed frames, replay counter will be increased
 - nonce nonces (of supplicant and authenticator) to generate new keys
 - RSC Receive Sequence Counter starting packet number of a group key
 - MIC contains Message Integrity Check created with KCK
 - Key Data contains group key encrypted with KEK
- encryption schemes used: AES-CCMP, GCM , MAC: Michael (weak), GHASH (from GCM)

handshake:

- notation: after ";" the data are encrypted
- green background = "sometimes"
- Enc^{*i*}_{*K*} is encryption with key *K* and IV *i*

association stage	supplicant		authenticator
	New March	Authentication request \rightarrow	North States
		\leftarrow Authentication response	
4-way handshake	News	$\leftarrow Msg1(r,Anonce)$	Network Network
	derive PTK		
		$Msg2(r,Snonce) \rightarrow$	
	No. of Stations	\leftarrow Msg3(r+1,GTK)	Neis Anna Neis A
			derivePTK
	2	$Msg4(r+1) \rightarrow$	
	install PTK		install PTK
group key		$\leftarrow \operatorname{Enc}_{\operatorname{PTK}}^{x}(\operatorname{Group1}(r+2;\operatorname{GTK}))$	
handshake	New York Contractor	$\operatorname{Enc}_{\operatorname{PTK}}^{y}(\operatorname{Group2}(r+2)) \rightarrow$	New York Street
	install GTK		install GTK

Table 1.

state automaton definded, states for the supplicant:

A) PTK-INIT:

- entered when 4 way handshake started
- exit to state PTK-START with Msg1 received
- operations: PMK- preshared master key

B) PTK-START:

- exit: self loop with MSg1 received, with proper Msg3 to state PTK-NEGOTI-ATING (proper= MIC correct and no replay)
- operations:
 - TPTK=CalcPTK(PMK,ANonce,SNonce)

Send Msg2(SNonce)

C) PTK-NEGOTIATING:

- exit: unconditional to PTK-DONE
- operations:
 - PTK=TPTK
 - Send Msg4
- D) PTK-DONE:
 - exit: to PTK-START if Msg1 received, to PTK-NEGOTIATING if proper Msg3 received

attack 1 - plaintext retransmission of Msg3

supplicant		adv		authenticator
	$\leftarrow Msg1(r,Anonce)$		\leftarrow Msg1(r,Anonce)	
derive PTK				
	$Msg2(r,Snonce) \rightarrow$		$Msg2(r,Snonce) \rightarrow$	
	$\leftarrow Msg3(r+1;GTK)$		\leftarrow Msg3(r+1;GTK)	
				derivePTK
	Msg4(r+1) \rightarrow			
install PTK				
	$\operatorname{Enc}_{\operatorname{PTK}}^{1}\{\operatorname{Data}(A)\} \rightarrow$			
	\leftarrow Msg3(r+2;GTK)		\leftarrow Msg3(r+2;GTK)	
No. of Statistics	$\operatorname{Enc}_{\operatorname{PTK}}^{2} \{\operatorname{Msg4}(r+1)\} \rightarrow$			
resinstall PTK				
			$\operatorname{Enc}_{\operatorname{PTK}}^{2}\{\operatorname{Msg4}(r+1)\} \rightarrow$	(rejected)
			$Msg4(r+1) \rightarrow$	
				install PTK
	$\operatorname{Enc}_{\operatorname{PTK}}^{1} \{ \operatorname{Data}(B) \} \rightarrow$		$\operatorname{Enc}_{\operatorname{PTK}}^{1} \{\operatorname{Data}(\ldots)\} \rightarrow$	

mechanism:

- according to the 802.11 standard Msg4(r+1) will be accepted as it is checked that r+1 is a replay counter used before
- the problem is that $\operatorname{Enc}_{\operatorname{PTK}}^1\{\operatorname{Data}(A....)\}$ and $\operatorname{Enc}_{\operatorname{PTK}}^1\{\operatorname{Data}(B....)\}$ use the same IV but security of the encryption modes used collapse in this case