
copyright: Mirosław Kutyłowski, Politechnika Wrocławska

Security and Cryptography 2022

Mirosław Kutyłowski

XII. CRYPTO &COMMUNICATION SECURITY

1

part 1 - first lectures

many mistakes in practice:

− risk of common (standard) groups

− cryptanalysis: most efficient number field sieve (NFS):

− complexity is subexponential (for Zp it is exp (1.93+ o(1))(log p 1/3(loglog p)2/3)

− most time consuming: precomputation independent from the target number y (log (y)
to be computed)

− the time dependant computation on y can be optimized (still subexponential but
lower)

− 512-bit groups can be broken, MitM attack can be mounted

2

− standard safe primes – seem to be ok, but attacker can amortize the cost over many
attacks

− TLS with DH: frequently “export-grade” DH with 512 bit primes, about 5% of servers
support DHE_EXPORT, most servers (90% and more) use a few primes of a given length,
after a precomputation breaking for a given prime: reported as 90 sec

− TLS: client wants DHE, server offers DHE_EXPORT, but one can manipulate the mes-
sages exchanged, so that the client treats the (p512, g, g

b) as a response to DHE – it is
not an implementation bug!

− sometimes non safe prime used (the number
p− 1

2
is composite), Pohling-Hellman method

can be used

− DH-768 breakable on academic level, claims: DH-1024 breakable by state agencies in ...

3

recommendations:

− avoid fixed prime groups

− transition to EC (partially withdrawn due to required transition to post-quantum
instead)

− deliberately do not downgrade security, even if seems to be ok

− follow the progress in computer algebra

4

Padding attack (Serge Vaudenay)

Attacked scenario:

− the plaintext should consist of some number of blocks of length =b

− padding is always applied (even if unnecessary)

− if i positions have to be padded: the padding consists of i bytes, each of them is i.

− So: removing padding is obvious

− encrypt the resulting padded plaintext x1, � ,xN in the CBC mode with IV (fixed or
random):

y1=Enc(IV⊕ a1), yi=Enc(yi−1⊕ xi)

− properties:

− efficient

− warning: do not repeat IV. (if IV fixed, then one can check that two plaintexts have
the same prefix)

5

attack:

− manipulate cipertext

− destination node decrypts, padding might be incorrect

− how to react to incorrect padding? Each reaction will turn out to be wrong:

→ reaction “reject”: creates padding oracle (attacker can see that some manipulations
result in correct padding)

→ reaction “proceed”: enables manipulation of the plaintext data

6

option “reject”, last word oracle:

− goal: compute a=Dec(y) for a block y

− create an input for the padding oracle:

− create a 2 block ciphertext: r= r1� rb chosen at random, c� r |y

− oracle call: if Oracle(c)= valid, then Dec(y)⊕ r should yield a correct padding.

− whp this happens if ab= rb⊕ 1 (that is, if the padding consists of a single “1”).

− other options: suffix “22”, “333”, “4444”,.... are less probable

7

decryption possibilities

Fishing out the cases of a longer suffix

− it may happen that the oracle says valid because of other correct padding.

− Solution (idea: change consequtive words in the padding until invalid):

1. pick r1, r2� , rb at random, take i=0

2. put r= r1r2� rb−1(rb⊕ i)

3. run padding oracle on r |y, if the result invalid then increment i and goto (2)

4. rb� rb⊕ i /* now we have a correct padding of an unknown length

5. for j= b to 2:

r� r1� rb−j(rb−j+1⊕ 1)rb−j� rb

/* attempting to disturb padding, from left to right

ask padding oracle for r |y, if invalid then output (rb−j+1⊕ j)� (rb⊕ j) and halt

6. output rb⊕ 1 /* last choice, manipulating all positions except the rightmost has
not created an error so the padding has length 1, so yb⊕ rb=1 or yb= rb⊕ 1

8

changing r so that the result should have suffix
1, 22, 333, 4444, ...

block decryption oracle

let a1� ab be the plaintext of y

decryption:

− get ab via the last word oracle

− proceed step by step learning aj−1 once aj ,� , ab are already known

1. set rk� ak⊕ (b− j+2) for k= j ,� , b /* preparing the values so that the padding
values (b− j+2) appear at the end)

2. set r1,� , rj−1 at random, i� 0 /* search for the value that makes a proper padding

3. r� r1� rj−2(rj−1⊕ i)rj� rb

4. if output on r |y is invalid, then i� i+1 and goto 3

5. output rj−1⊕ i⊕ (b− j+2)

9

decryption oracle

− block by block, (after decryption we have to XOR with the previous ciphertext block due
to CBC construction)

− the only problem is the first block if IV is secret

10

bomb oracles:

− padding oracle in SSL/TLS breaks the connection if a padding error occurs , so it can be
used only once

− bomb oracle: try a longer part at once, execute many trials

other paddings:

easy to adjust the attack in the following cases (the reason is that we KNOW what to expect
on a given position of the padding) :

− 00� .0n instead of nn� .n

− 12� .n instead of nn� .n

the padding where it would not work is a padding with random data on the added positions

11

Applications for (old) versions of SSL/TLS, ...

− if MAC applied before padding, then padding oracle techniques can be applied

− wrong MAC and wrong padding create the same error message - from SSL v3.0, debatable
whether it is impossible to recognize the situation via side channel (response time)

− TLS attempts to hide the plaintext length by variable padding

IPSEC: discards message with a wrong padding, no error message, but there might be
other activities to process errors (and they may leak information)

− WTLS: decryption-failed message in clear (!) session not interrupted

− SSH: MAC after padding (+)

12

Lucky Thirteen

− concerns DTLS (similar to TLS for UDP connections)

− MAC-Encode-Encrypt paradigm (MEE), MAC is HMAC based

13

− 8-byte SQN, 5-byte HDR (2 byte version field, 1 byte type field, 2 byte length field)

− size of the MAC: 16 bytes (HMAC-MD5), 20 bytes (HMAC-SHA1), 32 bytes (HMAC-
SHA-256)

− padding: p+1 copies of p, at least one byte must be added

− after receiving: checking the details: padding, MAC, (underflow possible if padding manip-
ulated and padding removed blindly)

− HMAC of M :

T : =H((Ka⊕ opad)||H((Ka⊕ ipad)||M)) for constants opad and ipad and key Ka

14

− Distinguishing attack:

→ M0 : 32 arbitrary bytes followed by 256 copies of 0xFF (11111111 in binary)

→ M1: 287 bytes followed by 0x00

→ both M0 and M1 consist of 288 bytes, plaintext consists of 18 16-byte (128-bit)
blocks

→ encoded as Md||T ||pad, we aim to guess d

→ C = the resulting ciphertext

15

M0 : 32 arbitrary bytes followed by 256 copies of 0xFF

M1: 287 bytes followed by 0x00

→ create a ciphertext C ′ by truncating all parts of C corresponding to T ||pad

→ give HDR||C ′ for decryption

→ for M0:

− 256 copies of 0xFF interpreted as padding and removed,

− remaining 32 bytes treated as a short message and MAC,

− calculating MAC: 4 hash block operations, then typically error returned to the
attacker

→ if M1: 8 hash evaluations as HMAC computed over a long message (then typically
an error)

16

Plaintext recovery attacks for CBC encrypted transmission

− C∗ – the block of ciphertext to be broken, C ′ – the ciphertext block preceding it

− we look for P ∗, where P ∗=Dec(C∗)⊕C ′

− assume CBC with known IV, b= 16 (as for AES). t= 20 (as for HMAC-SHA-1)

− let Δ be a block of 16 bytes, consider

Catt(Δ)=HDR||C0||C1||C2||C
′⊕Δ||C∗

it represents 4 non-IV blocks in the plaintext, the last block is:

P4=Dec(C∗)⊕ (C ′⊕Δ)=P ∗⊕Δ

17

− case 1: P4 ends with 0x00 byte:

− 1 byte of padding is removed, the next 20 bytes interpreted as MAC, 43 bytes left -
say R. MAC computed on SQN|HDR|R of 43+13=56 bytes

− case 2: P4 ends with padding pattern of ≥2 bytes:

− at least 2 bytes of padding removed, 20 bytes interpreted as MAC, at most 42 bytes
left, MAC over at most 42+13=55 bytes

− case 3: P4 ends with no valid padding:

− according to RFC of TLS 1.1, 1.2 treated as with no padding , 20 bytes treated as
MAC, verification of MAC over 44+13=57 bytes

– MAC is computed to avoid other timing attacks!

18

− time: case 1 and 3: 5 evaluations of SHA-1, case 2: 4 evaluations of SHA-1, detection
of case 2 possible in LAN

− in case 2: most probable is the padding 0x01 0x01, all other paddings have probability
about ≈

1

256
of probability of 0x01 0x01, so we may assume that P4=P ∗⊕Δ ends with

0x01 0x01. Then we derive the last two bytes of P ∗.

−

19

repeat the attack with Δ′ that has the same last two bytes as Δ to check if the
padding has the length bigger than 2 (we are changing the byte 3 and observe whether
the case 2 occurs, if it is so, then padding has length 2).

− after recovery of the last two bytes the rest recovered byte by byte from right to left:

− the original padding attack

− e.g. to find 3rd rightmost byte set the last two bytes Δ so that P4 ends with 0x02
0x02, then try different values for the Δ so that Case 2 occurs (meaning that P4

ends with 3 bytes 0x02

− average time: 14 · 27 trials

20

practical issues:

→ for TLS after each trial connection broken, so multi-session scenario

→ timing difference small, so necessary to gather statistical data

→ complexity in fact lower, since the plaintexts not from full domain: e.g. http username
and password are encoded Base64

→ partial knowledge may speed up the recovery of the last 2 bytes

→ less efficient configuration of the lengths for HMAC-MD5 and HMAC-SHA-256

21

BEAST

attack, phase 0:

1. P to be recovered (e.g. a password, cookie, etc), requires ability to force Alice to put
secret bits on certain positions

2. force Alice to send a ciphertext of 0� 0P0 (requires malware on her computer), where
P0 the last byte of P

3. eavesdrop and get Cp=Enc(Cp−1⊕ 0� 0P0)

4. guess a byte g

5. force Alice to send encrypted plaintext Ci−1⊕Cp−1⊕ 0� 0g :

then Alice sends Ci=Enc(Ci−1⊕Ci−1⊕Cp−1⊕ 0� 0g)=Enc(Cp−1⊕ 0� 0g)

6. if Ci=Cp then P0= g

22

attack phase 1:

1. P0 already known

2. force Alice to send 0� 0P0P1 and proceed as in phase 0

phases 2-15 until the whole P0�P15 learned

protection: browser must be carefully designed, injecting plaintexts must be prevented
(SOP- Same Origin Protection).

23

CRIME (2012)

− based on compression algorithm used by some versions of TLS

− compression: LZ77 and then Huffman encoding, LZ77- sliding window approach: instead
of a string put a reference to a previous occurence of the same substring

− idea of recovering cookie:

24

modified POST:

− LZ77 compresses the 2nd occurence of secretcookie= or secretcookie=0.

− We try all options secretcookie=i to find out the case when compression is more effective
(secretcookie=7)

− once the 1st character of cookie is recovered, repeat the attack for the 2nd character
(trying all “secretcookie=7i” in the preamble)

25

TIME

• again based on compression but now on the server’s side (from the client to the server
compression might be disabled and CRIME fails)

• works if the server includes the client’s request in the response (most do!)

• works even if SOP is enabled. SOP does not control data with the tag img, so the
attacker can manipulate the length and therefore influence the number of blocks for block
encryption

• the attacker requires malicious Javascript on the client’s browser

• the attacker tries to get the secret value sent from the server to the client

26

• mechanism:

→ as in CRIME, the request sends “secretvalue=x” where x varies

→ the response is compressed, so it takes either “secretvalue=” or “secretvalue=x”

→ the length manipulated so that either one or two packets are sent – connection specific
data must be used: Maximum Transmission Unit

→ RTT (round trip time) measured

independent of the browser, it is not an implementation attack!

countermeasure: restrict displaying images

27

BREACH

Browser Reconnaissance and Exfiltration via Adaptive Compression of Hypertext

• attack against HTTP compression and not TLS compression as in case of CRIME

• a victim visits attacker-controlled website (phishing etc).

• force victim’s computer to send multiple requests to the target website.

• check sizes of responses

28

• requirements: application supports http compression, user’s input in the response, sensitive data in the
response

• countermeasures:

→ disabling compression

→ hiding length (randomizing the length of the output – it makes the attacks only harder if the attack
can be repeated many times)

→ no secrets in the same response as the user’s data

→ masking secret: instead of S send R||S ⊕R for random R (fresh in each response)

→ trace behaviour of requests and warn the user

29

POODLE (2014)

in SSL v.3.0 using technique from BEAST:

− padding is not covered by MAC so the attacker can manipulate it

− padding non-deterministic: padding 1 to L bytes (L= block length, say 16), the last byte
denotes the number of preceding padding random bytes

− encrypted POST request:

POST /path Cookie: name=value... hr\n\r\ni body ||20-byte MAC||padding

30

− manipulations such that:

− the padding fills the entire block (encrypted to Cn)

− the last unknown byte of the cookie appears as the last byte in an earlier block
encrypted into Ci

− attack: replace Cn by Ci and forward to the server

usually reject

accept if DecK(Ci)[15]⊕Cn−1[15] = 15, thereby Pi[15] = 15⊕Cn−1[15]⊕Ci−1[15]

proceed in this way byte by byte

− downgrade dance: provoke lower level of protection by creating errors say in TLS 1.0, and
create connection with SSL v3.0

− the attack does not work with weak (!) RC4 because of no padding

31

Weaknesses of RC4

• known weaknesses:

→ the first 257 bytes of encryption strongly biased, ≈200 bytes can be recovered if ≈232 encryptions
of the same plaintext available

(likely in case of broadcating the same text to many recipients)

simply gather statistics as in case of Ceasar cipher

→ at some positions (multiplies of 256) if a zero occurs, then the next position more likely to contain
a zero

• broadcast attack: force the user to encrypt the same secret repeatedly and close to the beginning

• countermeasure: no secrets in the initial part!

32

CCM encryption mode (Counter with CBC-MAC)

just to avoid patent threats (triggered by request to patent OCB mode - patented in USA,
exempt for general public license for non-commertial use)

Prerequisites: block cipher algorithm; key K; counter generation function; formatting func-
tion; MAC length Tlen

Input: nonce N ; payload P of Plen bits; valid associated data A

Computation: Steps:

1. formatting applied to (N ,A, P), result: blocks B0,� , Br

2. Y0� EncK(B0)

3. for i=1 to r: Yi� EncK(Bi⊕ Yi−1)

4. T � MSBTlen(Yr)

5. generate the counter blocks Ctr0,Ctr1,� ,Ctrm for m=Plen/128

6. for j=0 to m: Sj� EncK(Ctrj)

7. S� S1||� ||Sm

8. C� (P ⊕MSBPlen(S))|| (T ⊕S0)

33

