
copyright: Mirosław Kutyłowski, Politechnika Wrocławska

Security and Cryptography 2022

Mirosław Kutyłowski

XII. CRYPTO &COMMUNICATION SECURITY

1

part 2 -- from the second lecture

———————————————

GCM (The Galois/Counter Mode)

background:

• popular as replacement for CBC mode (due to attacks presented!) and weaknesses of
RC4 (now forbidden in TLS)

• fundamental critics already before standardization

• finally (April 2018) Google decided to remove it until April 2019

• operations over GF(2128), addition in the field represented by ⊕

35

Computation:

1. H: =EncK(0
128)

2. Y0: =IV||0311 if length of IV should be 96

or Y0: =GHASH(H, {}, IV)

3. Yi: =incr(Yi−1) for i=1,� , n (counter computation)

4. Ci� Pi⊕EncK(Yi) for i=1,� , n− 1 (counter based encryption)

5. Cn
∗
� Pn⊕MSBu(EncK(Yn)) (the last block need not to be full)

6. T � MSBt(GHASH(H,A,C))⊕EncK(Y0)

36

37

Details of computation of the tag

GHASH(H,A,C)=Xm+n+1 where m is the length of authenticating information A, and:

Xi equals:

0 for i=0

(Xi−1⊕Ai) ·H for i=1,� , m− 1

((Xi−1⊕ (Am
∗ ||0128−v)) ·H for i=m

(Xi−1⊕Ci) ·H for i=m+1,� ,m+n− 1

((Xm+n−1⊕ (Cm
∗ ||0128−u)) ·H for i=m+n

((Xm+n⊕ (len(A)|len(C))) ·H for i=m+n+1

39

Decryption:

1. H: =EncK(0
128)

2. Y0: =IV||0311 if length of IV should be 96

or Y0: =GHASH(H, {}, IV)

3. T ′
� MSBt(GHASH(H,A,C))⊕EncK(Y0) , is T =T ′?

4. Yi: =incr(Yi−1) for i=1,� , n

5. Pi� Ci⊕EncK(Yi) for i=1,� , n

6. Pn
∗
� Cn

∗⊕MSBu(EncK(Yn))

40

Fundamental flaws (by Nils Ferguson)

− engineering disadvantages: message size up to 236−64 bytes, arbitrary bit length (instead
of byte length)

− collisions of IV: the same pseudorandom string for encryptions

− collisions of Y0 also possible. Due to birthday paradox 264 executions might be enough
for 128-bit values, for massive use in TLS the number of executions 264 is maybe a threat

41

Ferguson attack via linear behavior

− authenticating tag computed as leading bits of T =K0+
�

i=1

N
Fi ·H

i where each Fi is
known but H is secret

− representing elements of GF(2128): X – as an abstract element of the field, Poly(X) –
as a polynomial over GF(2) with coefficients X0, X1, � ., X127, multiplication in the
field=multiplication of polynomials modulo a polynomial of degree 128

− multiplication by a constant D : X → D · X can be expressed by multiplication by a
matrix:

(D ·X)T =MD ·XT whereMD has size 128× 128

− squaring is linear: (A+B)2=A2+B2 (field of characteristic 2), so

(X2)T =MS ·X
T

where MS is a fixed 128×128 matrix (important point for the weakness!)

42

element Z of the field treated as a formal
polynomial:

note that

the polynomial on the right side has to be
reduced modulo a polynomial of degree 128
(this is how we define operations in this field)

everything are linear operations -- they can be
translated into a multiplication by a matrix

− the goal is to find a collision, i.e. C ′ such that�
i=1

N

Ci ·H
i=

�
i=1

N

Ci
′ ·H i

or its leading bits (taken to MAC) are the same. Then authentication would fail – one
could change the bits in a ciphertext C

− let Ci−Ci
′=Ei, so we look for a nonzero solution to

�
i=1

N
Ei ·H

i=0

− we confine ourselves to Ei=0 except for i which is a power of 2. Let Di=E2i. Let 2
n=N

− we have to to find a solution for

ET =
�
i=1

n

MDi
· (MS)

i ·HT

where E is an error vector that should become 0

43

− let

AD=
�
i=1

n

MDi
· (MS)

i

− then we have ET =AD ·HT

− write equations to force a row of AD to be a row of zeros (then in the result the bit of E
corresponding to this row is 0), there is an equation for each bit, so 128 linear equations
for the whole row

− there are 128 ·n free variables describing the values Di (128 for each Di)

− find a nonzero solution describing the values of Di so that n − 1 rows of AD become
rows of zeroes

− consider messages of length 217, D0=0 due to issues like not changing the length

− D1, D2, .., D17 can be chosen so that 16 rows of AD are zero,

− GCM used with 32 bits MAC, so still 16 bits might be non-zero, so the chance of forgery
is 2−16

44

One step further: Recovering H

− from a collision we have 16 linear equations for H , so we may describe H by a sequence
of 112 unknown bits H ′ and expression

HT =X ·H ′T

where X is a matrix 128x112.

ET =AD ·X ·H ′T

− now repeat the same with H ′ - the attack is easier as there are only 112 bits and not
128, there are 112 equations per row and 17 · 128 free variables, so one can zeroize 19
rows and get the chance of forgery of 2−13. If succeeds, then 13 new variables of H known.

− repeat until all bits of H known.

− finally, if H is known it is possible to forge MAC for any random ciphertext
C – a disaster!

45

ChCha

− stream cipher, Chacha extends a 256 bit stream key into 264 randomly accessible streams,
each of 264 blocks of 64 bytes

− Daniel Berstein’s construction,

− used by Google also RFC, in libraries (OpenSSL,...)

− variant of SALSA from European ECRYPT competition

− faster than AES

− working on four 32-bit words

46

− quarter-round of SALSA 20 for inputs a, b, c, d

1. b: =b xor (a+ d)≪7

2. c: =c xor (b+ a)≪9

3. d: =a xor (c+ b)≪13

4. a: =a xor (d+ c)≪18

− quarter-round of ChaCha20 (better diffusion)

1. a: =a+ b ; d: =d xor a ; d: =d≪ 16

2. c: =c+ d ; b: =b xor c ; b: =b≪ 12

3. a: =a+ b ; d: =d xor a ; d: =d≪ 8

4. c: =c+ d ; b: =b xor c ; b: =b≪ 7

47

− Chacha matrix 4x4: (where ’input’ = ‘block counter’+nonce)

const const const const

key key key key

key key key key

input input input input

− round: 8 quarter-rounds:

− 4 quarter rounds on: 1st column, 2nd column, 3rd column, 4th column

− quarter-round on diagonals

QUARTEROUND(x0, x5, x10, x15),

QUARTEROUND(x1, x6, x11, x12)

QUARTEROUND(x2, x7, x8, x13)

QUARTEROUND(x3, x4, x9, x14)

− ChaCha20 - 20 rounds

48

Poly1035

− designed by Bernstein, no patent, fa

− MAC algorithm, 16 byte MAC

− variable message length, 16 byte AES key, 16 byte additional key r, 16 byte nonce

− works with AES, not weaker than AES, but if AESails, then use a different encryption
scheme

− the only way to break Poly is to brak AES

− per message overhead is low

− no long lookup tables, it fits into cache memory even if multiple keys used

− keys: k - for AES, r - little endian 128-bit number

− some limitations on r because of efficiency of implementation

r= r0+ r1+ r2+ r3 where

49

r0∈ {0, 1,� , 228− 1}, r1/232∈ {0, 4, 8, 12,� , 228− 4},...

− nonces: 16 bit, encrypted by AES

− message: divided into 16 byte chunks. Each chunk treated as a 17-byte number with
little-endian, where the most significant byte is an added 1 or 0, the result for a message
is: c1,� , cq

− authenticator

(((c1 r
q+c2 r

q−1+� +cq r
1)mod 2130� 5)+AESk (nonce))mod 2128

denoted also Hr(m)+AESk(nonce)

− 2130− 5 is a prime,

− a nonce must be usely once

− security: for random messages m,m′ of length L pbb that Hr(m) =Hr(m
′) + g is at

most 8⌈L/16⌉/2108 (all differentials have small probability)

50

TLS 1.3 (August 2018)

− list of symmetric algorithm contain now only AEAD (authenticated Encryption with Asso-
ciated Data)

− separating key agreement and authentication from record protection

− static DH and RSA for negotiation of keys removed

− after ServerHello all handshake messages are encrypted

− key derivation function HKDF (hash key derivation function: first derive PRK via hashing
of the shared secret+salt+user input, from PRK derive the secrets by hashing with
sequence number)

− handshake state machine restructured to be more consistent, no superfluous messages

− elliptic curve algorithms in base specification, EdDSA included, point format negotiation

51

removed (one point format)

− RSA padding changed to RSASSA-PSS

− no support for some elliptic curves, MD5, SHA-224

− no compression

− prohibiting RC4 and SSL negotiation for backwards compatibility

− negotiation mechanism removed, instead a version list provided in an extension

− authentication with DH, or PSK (pre-shared key), or DH with PSK

− session resumption with PSK

− added: Chacha20 stream cipher with Poly1305 authentication code

− Ed25519 and Ed448 digital signature algorithms added

x25519 and x448 key exchange protocols added

52

CERTIFICATES and – SSL/TLS

“Certified Lies”

− rogue certificates + MitM attack: the user believes that he is directed elsewhere

− no control over root CA’s worldwide, indicated either by operating system or the browser

− compelled assistance from CA’s ?

53

ROGUE Certificates and MD5

• target: create a certificate (webserver, client) that has not been issued by CA

• not forging a signature contained in the certificate but:

i. find two messages that Hash(M0) = Hash(M1) and M0 as well as M1 have some
common prefix that you expect in a certificate (e.g. the CA name)

ii. submit a request corresponding to M0, get a certificate with the signature over
Hash(M0)

iii. copy the signature from the certificate concerning M0 to a certificate based on M1

• problems: some data in M0 are to be guessed: sequential number, validity period,

some other are known in advance: distinguished name, ...

54

legitimate website rogue CA
certificate certificate
serial number serial number
issuing CA issuing CA
validity period validity period
domain name chosen prefixes rogue CA name

1024 bit RSA public key
extensions
“CA=true”

................................. tumor
2048 RSA public key collision bits

.................................

extension “CA=false” identical suffix

Table.

55

• finding M0 and M1 has to be fast (otherwise the guess about the serial number and
validity will fail) - e.g. a day over the weekend

56

• attack on MD5, general picture:

message A

prefix P

padding Sr

birthday blocks Sb

near-collision block Sc,1

near-collision block Sc,2

�

near-collision block Sc,r

suffix
←collision→

message B

prefix P ′

padding Sr
′

birthday blocks Sb
′

near-collision block Sc,1
′

near-collision block Sc,2
′

�

near-collision block Sc,r
′

suffix

Table.

•

57

prefix, birthday bits, near collision blocks:

• birthday bits: 96, end at the block boundary, they are RSA bits – in the genuine cer-
tificate, “tumor” (ignored part by almost all software- marked as a comment extension)
– in the rogue certificate

birthday bits make the difference of intermediate hash values computed for both
certificates fall into a good class

birthday paradox makes it possible: we may try many possibilities for tumor

• then apply 3 near-collision blocks of 512-bits. website: we have “consumed” 208 + 96
+ 3·512 = 1840 bits of the RSA modulus. Rogue certificate: all bits concerned are
in the “tumor”

58

• after collision bits: 2048-1840 = 208 bits needed to complete the RSA modulus of the
webpage – we have to generate an RSA number with the prefix of 1840 bits already
fixed?

– continued so that two prime factors obtained:

→ B denotes the fixed 1840-bit part of the RSA modulus followed by 208 ones

→ select at random 224-bit integer q until B mod q<2208, continue until both q

and p= ⌊B/q⌋ are prime. Then

− p · q is an RSA number

− p · q <B, B− p · q=B− q · ⌊B/q⌋<2208. Hence p · q has the same 1840 most
significant bits as B

→ this RSA number is not secure, but still factorizing it is not feasible and cannot be
checked by CA before signing (as the smallest factor is more than 67-digit prime)

→ ... one can create RSA signature for the certificate request

59

• attack complexity (number of hash block evaluations) for a chosen prefix MD5: 249 at
2007, 239 in 2009, not much motivation for more work - remove MD5 certificates! (For
a collision: 216)

for SHA-1 still 277 in 2012 (for a collision: 265)

• history:

→ attack found

→ real collision computed as a proof-of-concept

→ CA informed and given time to update

→ publication

→ code available

60

FLAME

• malware discovered 2012, 20MB, sophisticated code, mainly in Middle East, government
servers attacked

• draft of the attack:

− client attempts to resolve a computer name on the network, in particular makes WPAD
(Web Proxy Auto-Discovery Protocol) requests

− Flame claims to be WPAD server, provides wpad.dat configuration file

− victim that gets wpad.dat sets its proxy server to a Flame computer (later no sniffing
necessary!)

− Windows updates provided by FLAME computer. The updates must be properly
signed to be installed!

− signatures obtained for terminal Services (not for Windows updates!), certificates
issued by Microsoft.

− till 2012 still signatures with MD5 hash

61

64

detailed picture of finding hash collision

