
Security and Cryptography 2022

Mirosław Kutyłowski

XI. PRIVACY

Protection of personal data and GDPR

− declared as fundamental right in EU, but technically fundamental for cybersecurity

• identity theft e.g. for financial criminality

• mobbing, discrimination, social abuse

• lack of protection is a threat for economy and national security

1

−

Frameworks

− GDPR – EU and European Economic Area, adopted by many countries, some recognized
as equivalent by EU

− Safe Harbour approach , Privacy Shield: https://www.privacyshield.gov

− California Consumer Privacy Act

− Schrems II verdict of Court of Justice of the European Union

− after Schrems II: major companies get policies approved by EU

− but: EU Whistleblowers Directive: protection of whistleblowers is declarative only

2

Privacy in communication

− one can hide payload communication

− it is not trivial how to hide who is communicating with whom

− this is a sensitive data

protection methods:

• broadcast channel

• token ring

• dining cryptographers -DC nets

• onion protocols and TOR

3

technology?

token ring mechanism

only A can understand c

with re-encryption,
processing at a node

easy re-encryption: ElGamal

universal re-encryption based on ElGamal

re-encrypted:

Dining Cryptographers Protocol

− protecting the source of a 1-bit message. An unknown user sends a 1-bit message.

− protocol for 3 cryptographers sitting at around table:

1. each pair of neighbors establish a shared bit at random

2. each cryptographer that is not transmitting computes XOR of the bits shared with
the neighbors,

3. the sender computes the same XOR but swaps it if the bit transmitted is 1

4. each cryptographer reveals his result

5. the message is the XOR of the bits published:

− if the message is 0, then each shared bit occurs twice:

(bAB⊕ bBC)⊕ (bBC⊕ bCA)⊕ (bCA⊕ bAB)= 0

− otherwise, one of the bits is swapped: e.g. we have

(bAB⊕ bBC)⊕ (bBC⊕ bCA⊕ 1)⊕ (bCA⊕ bAB)= 1

4

the point of view of a single participant:

possible options from the point of view of BND:

a)

b)

Communication steganography–

Hiding communication in innocent traffic

Idea: hiding data in innocent data transmitted (e.g. images, sound, protocol execution data)

steganography versus watermarking:

i. watermarking is visible, not annoying but hard to remove,

ii. steganography is invisible

typical applications: copyright protection, DRM, but also attacks against anonymity of
communication

5

Steganography in images

1. original picture – name: stego image S

2. marking algorithm: applied to message M and the stego image S

S ′
� F (M,S, key)

3. outcome S ′ transmitted/published

4. retreiving the covered message M ′
� G(S ′,key,S) (S might be optional) whereM ′≈M

invisibility: without key impossible to decide whether S ′ (or S) hides a message

6

Concrete techniques for image/video/audio steganography:

− changing LSB bits of gray scale

− JPEG encoding: cosinus transform, high frequency components are manipulated anyway
for compression

− other digital transforms

− audio encoding: transformation and assigning coefficients to waves – manipulations of
certain coefficients undetectable for humans

7

Problems

− multiple stego images

− transformations to remove stego, especially fragile: stego messages as ciphertexts

− artefacts due e.g. to the block based transformations

8

transformation is executed separately in
each block, so if not careful, then the blocks
of pixels become visible to a human eye

Watermarking/steganography in network flow:

− different ways of encoding (e.g.: a change encodes 1, no change encodes 0)

− all random parameters transmitted in clear may contain watermarks

− simple timing: interpacket delays, departure times may contain watermarks

− mean balancing:

− 2d probes divided into two sets A and B.

− the expected values of A and B are the same with no watermarking

− changing the characteristics so that expected values differ in some direction (the
direction is the watermarked value)

9

− sources of mean balancing watermarks:

− interpacket delays

− interval centroid: divide into 2d time intervals, in each compute mean arrival time

− interval counting: divide into 2d time intervals, in each compute the number of packets

10

− size: packet size (harder if block encryption applied), object size (https, malicious
Javascript generating watermarked size data)

− network rate:

− one can influence it with dummy packets

− burst traffic

− response times in transmission, packet order etc

11

Defense against steganography:

(sometimes problematic or illegal due to intelectual property rights)

i. compression

ii. transforms and random distortions

iii. stretching (Stirmark)

iv. printing and scanning, input to an analog device and digitalize again

effectiveness measured by relative entropy:

D(P1kP2)=
�

q∈space

Pr1 (q) · log
Pr1 (q)

Pr2 (q)

relative entropy of plaintexts and hidden text should be smaller than some small ǫ

12

Communication Anonymity via Mixing: A mixer

messages m1,m2,� ,mk go through a mixer A:

− message mi sent encrypted with the public key of A

Ci� EncPKA
(mi)

− A decrypts C1,� , Ck and forwards them to their destinations

13

Conditions:

encryption might be secure but nevertheless one can link the ciphertexts with the decrypted
texts due to:

− message size

− timing

So:

− all messages should have the uniform size

− A should collect them all, decrypt and send them in a random order

14

Onion Routing

an attempt to hide the sender and the destination of a message – hiding in a crowd of
messages

onion creation:

an onion created for a route going through servers A,B,C ,� ., Z to the final destination Γ

O1=EncA(B,EncB(C,EncC(� (EncZ(Γ,M))� .)))

(by encryption EncX we mean encryption with the public key of X)

15

traffic observed

Onion processing:

− O1 sent from the origin machine to A,

− server A decrypts with its private key and gets B and

O2=EncB(C,EncC(� (EncZ(Γ,M))� .))

− A sends O2 to B

− server B decrypts O2 with its private key and gets C and O3=EncC(� (EncZ(Γ,M))� .)

− the process is continued in the same way...

− ... until server Z finds Γ,M and forwards the message M to machine Γ

each processing steps is like peeling off one layer of an onion

17

Onion processing

18

Limitations

− idea: if two or more onions enter a server at the same time, get partially decrypted, then
forwarded, then it is impossible to say which incomming onion corresponds to which
outcoming onion - node mixing

− traffic analysis: assigning probabilities to permutations (π(i) = j means that the ith
sender has a message to the jth receiver)

− it is not enough to say that π(i)= j with ppb ≈
1

n
:

− let us assume that the adversary knows that π is a circular shift

− assume that the adversary gets extra knowledge:

− ”if source i is talking to destination j, then i+1 is talking to destination j+1”

however, still Pr (π(i)= j)=
1

n

19

Question: necessary length of the onions?

analytical results for restricted case of n senders and n receivers, messages sent simulta-
neously:

− O(log2n) if the adversary has a full knowledge of the system (not likely to have a better
estimation unless ... big progres in math), assumption: uniform distribution for choosing
destinations

− O(logn) if the adversary can see only a constant fraction of nodes, assumption: sender
i may have non-uniform distribution of destination points

− it is easy to see that Ω(logn) is necessary

20

maximum result from cryptanalysis:

perfect protection if

measure of difference of probability distributions

total variation distance to uniform distribution

Meaning of the results:

traffic analysis does not improve our prior knowledge in a significant way (e.g. if we know in
advance that source i always sends to destination j, then onions cannot hide this fact)

the guarantees are given in terms of total variation distance of two probability distribu-
tions:

kπ , µk=
1

2

�

ω∈Ω
|π(ω)− µ(ω)|, where Ω is the set of all events

21

Problems with onions

− replay attacks: just send the same onion (or partially decrypted onion) for the 2nd
time: the same subonions will appear along the forwarding path

defense: universal reencryption, example based on ElGamal encryption:

− ciphertext of m:

(βr,m · gr, βs, gs) for r, s chosen at random

− renecryption:

1. choose α, β at random

2. replace (y1, y2, y3, y4) by
�

y
1
· y3

α, y2 · y4
α, y3

β , y4
β
�

thereby we get (βr+αs,m · gr+αs, βsβ , gsβ)

if order of the group is a prime number, then this is equivalent with choosing

(βr ′,m · gr
′

, βs′, gs
′

) for random r ′, s′

22

Local view:

not all users have the same list of servers

then: long routes do not improve anonimity. Toy example:

− give user A a list of servers with 50% of servers used by nobody else

− no matter how long is the routing path designed by A, it is likely that close to
destination the path goes through a rogue server

− a few destinations available from this rogue server (50% of cases the rogue server
sends directly to the destination)

− an onion going through the rogue server originates from the attacked source

23

Network information

− timing at nodes: delays necessary

defense: collecting enough onions and flashing them at once. (slowdown!!!)

− sparse traffic means no protection

24

TOR

− free BSD licence

− connection based protocol, new connection established periodically (“10 minutes or so”)

− routes limited to 3 TOR nodes

25

TOR: onion based forwarding the symmetric keys

i. each node on the path learns only the predecessor and the successor

ii. the path established step by step:

− after establishing a subpath X0, X1, � ., Xk the subpath is used to send an
encrypted message over the channel to Xk stating that the next node is Xk+1.

− the sender and Xk+1 negotiate a new connection key via DH key exchange

iii. after making a connection the message is encrypted symmetrically with the keys:

AESrelay1(AESrelay2(AESrelay3(m)))

each relay node removes one layerof encryption when forwarding a message

iv. response to the sender: instead of decryption: encryption with keys shared with
the sender. The sender has to decrypt the onion

26

Step 1: connecting to the 1st node on the path

Step 2: connecting to the 2nd node on the path

DH protocol via the 1st node
(only forwarding the messages)

Sending onion and peeling it off

Problems:

− the exit node knows the plaintext

− traffic correlation

− application level attacks

− Heartbleed - change of public keys, some clients use old keys,

Other issues:

− many authorities fight against TOR as it helps to escape the control

27

Sending onion back

Onion Routing - Warning: Rogue Encryption

example: weak DH so that the relay key is leaked

28

PSEUDONYMIZATION

Symmetric methods:

− hashing the identifier: pseudonym=Hash(identifier)

problem: it is impossible to compute the identifier from the pseudonym, however hashing
all possible identifiers and brute force reveals the link between the pseudonym and iden-
tifier

− encryption with a (secret) symmetric key: unlinkability, however the user cannot
compute the pseudonym himself and the owner of the secret key can link all pseudonyms

− hashing with a key: as above, the party holding the secret key has to perform brute
force to link back the pseudonym to the identifier

29

Guessing real ID:

anonymous ID

pseudonymous ID

Asymmetric pseudonymization methods:

− based on Diffie Hellman Problem:

− a domain (service provider, database, etc) holds a pair of keys (d,D= gd)

− a user Alice holds a pair (x,X = gx)

− the pseudonym of Alice corresponding to D is gx·d , which is computed as Xd by
the domain manager, and as Dx by Alice

− nobody but the user and the domain manager can compute the pseudonym:

for a 3rd person deciding whether Xd corresponds to X in domain D means solving
DDH Problem

30

− a variant based on domain and a central Authority:

− the key d is not known to the domain authority

− d=dA+ddomain, where dA is known by Authority and ddomain is known by the domain
manager

− steps of generating the pseudonym:

1. Authority computes X ′
� XdA and presents X ′ to the domain manager

2. the domain manager computes pseudonym as (X ′)ddomain

− linking a pseudonym with the starting public key is a reverse process but both the
domain manager and the Authority must participate in it

31

deanonymization

− a variant from German personal identity cards (Restricted Identification):

− pseudonym of a user with public key X = gx is Hash(Dx)

− pseudonym presentation: by the ID card over a secure channel,

− no proof that the pseudonym is correct

− but a smart card can create only one pseudonym per domain

− revocation: by computing Hash((XdA)ddomain) jointly by the Authority and the
domain manager and putting the result on the blacklist

− blacklisting based on the domain pseudonym: requires brute force and recom-
puting all pseudonyms

− more flexibility, if pairing groups are available but be careful: DDH might be easy and so
the above methods do not work

32

Id card stolen, public key X

Serious problems

database in hospital A with pseudonyms

database in hospital B with pseudonyms

data from A to be included in B

Advantages and disadvantages of Restricted Identification:

− different pseudonyms generated automatically is

− user friendly

− makes re-identification based solely on data related to the pseudonym much harder

− problems:

− converting a pseudonym in domain D1 to a pseudonym in domain D2 might be hard
or infeasible, and require cooperation with the user and/or an authority

(problem area: moving pseudonymized medical records)

33

DATABASES and PRIVACY for QUERIES

the main problem is answering queries: does a query result disclose personal data?

Approach 1: anonymity set

− a query accepted if the number of record used to answer the query is at least k (and each
concerns a different person)

− the method is naive: the attack is to ask for two sets of records: one including Alice and
one excluding Alice to know the value for Alice

34

Approach 2: differential privacy

classify the algorithms (queries)

algorithm A satisfies ǫ-differential privacy, if for any two databases D and D ′ that differ by
elimination of one record:

− for any subset S of the image of A:

Pr (A(D)∈S)≤ eǫ ·Pr (A(D ′)∈S)

where the probability is over the random choices within the algorithm A

Then:

− ǫ=0 is the ideal for privacy: as e0=1 and the probabilities are exactly the same, but the
result does not depend on the database contents (noise)

− so it is necessary to find balance between privacy (ǫ as small as possible) and information
in the response (ǫ as big as possible)

35

Typical approach for achieving differential privacy

if the output of a query if z, then A creates a noise δ and outputs z+ δ

goal: if noise stronger than the effect of eliminating one record, then it should work to some
extent

36

Problem with outliers

if there are records that have very different values it is hard to keep promise of differential
privacy

solution: disregard them (as private data leak anyway) and concentrate on the rest

e.g.:

1. disregard a few entries that are outliers

2. for differential privacy take only those elements that have at least k neighbors in some
sense

37

PSEUDONYMOUS SIGNATURES

Application areas:

− while having the pseudonyms, how to authenticate digital data? Digital signatures would
solve the problem

− implementing GDPR rights in practice:

a data subject can authenticate the request (e.g. for data rectification) in a database
with pseudonyms by sending a request with a signature corresponding to the pseudonym

38

BSI Pseudonymous Signature:

• keys:

− domain parameters DM and a pair of global keys (PKM , SKM)

− public key PKICC for a group of eIDAS tokens, the private key SKICC known to the

39

issuer of eIDAS tokens

− assigning the private keys for a user:

the issuer chooses SKICC,2 at random, then computes SKICC,1 such
that

SKICC=SKICC,1+ SKM · SKICC,2

− a sector (domain) holds private key SKsector and public key PKsector.

− a sector has revocation private key SKrevocation and public key PKrevocation

− sector specific identifiers IICC,1
sector and IICC,2

sector for the user:

IICC,1
sector=(PKsector)

SKICC,1

IICC,2
sector=(PKsector)

SKICC,2

40

• signing: with keys SKICC,1, SKICC,2 and IICC,1
sector and IICC,2

sector for PKsector and message m

i. choose K1, K2 at random

ii. compute

− Q1= gK1 ·(PKM)K2

− A1=(PKsector)
K1

− A2=(PKsector)
K2

iii. c=Hash(Q1, IICC,1
sector , A1, IICC,2

sector , A2,PKsector,m)

(variant parameters omitted here)

iv. compute

− s1=K1− c · SKICC,1

− s1=K2− c · SKICC,2

v. output (c, s1, s2)

41

• verification:

compute

− Q1=(PKICC)
c · gs1 ·(PKM)s2

− A1=(IICC,1
sector)c · (PKsector)

s1

− A2=(IICC,2
sector)c · (PKsector)

s2

− recompute c and check against the c from the signature

• why it works?

(PKICC)
c · gs1 ·(PKM)s2=(PKICC)

c · gK1 ·(PKM)K2 · g−c·SKICC,1 ·(PKM)c·SKICC,2

=(PKICC)
c · gK1 ·(PKM)K2 · g−c·SKICC,1 ·(g)−c·SKM ·SKICC,2

=(PKICC)
c · gK1 ·(PKM)K2 · g−c·SKICC = gK1 ·(PKM)K2=Q1

• there is a version without A1, A2 and the pseudonyms IICC,1
sector , IICC,2

sector

42

Problems:

− the issuing authority knows the private keys

but: there is a way to solve it when the user gets two pairs of keys on the device and
takes their linear combination)

− breaking into just 2 devices reveals the system keys

− possible to create a trapdoor for enabling to link pseudonyms

− apart from SKICC= SKICC,1+ SKM · SKICC,2 there is a another relationship for
the user u

xu=SKICC,1+ su · SKICC,2

− xu and su are dedicated for user u - maybe not in the database but derived from
a secret key, say Z

− domain trapdoor: Tdomain,u=PKdomain
xu and su (it can be derived from Z alone)

− then one can conclude that nym1 and nym2 correspond to user u, iff:

Tdomain,u= nym1 · nym2
su

43

Anonymous credentials

two commercial products (libraries): Idemix (IBM) and UProve (Microsoft)

some details concerning Idemix

components:

− actors: issuer, recipient, verifier, trusted party

− attributes: for each attribute there is: name, value and type. The types are int,
string, date, enum (enumeration). The attributes concern the recipient.

− credentials: given by the issuer to the recipient

i. known (Ak): the issuer knows the value of an attribute

ii. commited (Ac): the issuer knows a commitment to the attribute but not the commit-
ment itself

iii. hidden (Ah): the attribute is completely hidden to the issuer

44

− keys:

− single master key for each user (m1)

− single master key for the Issuer – for creation of CL signatures

− pseudonyms:

− a single domain pseudonym for a user per domain: generated as as

domm1

where dom is the public key of a domain, and m1 is the user’s master key

− pseudonyms are unlinkable

45

Cryptographic schemes used by Idemix

CL signatures:

− RSA group, special choice of primes: p=2p′+1, q=2q ′+1, where p′ and q ′ are primes

− choose at random quadratic residues: R1,� , Rl, Z , S

− public key: (n,R1,� ,Rl, Z , S), private key: p, q (enabling computation of roots modn)

− security based on Strong RSA assumption: it is infeasibile to compute e-roots for e>2

− signature for messages m1,� .,ml:

− choose v at random and a prime e> 2 of length higher than each m1,� .,ml

− A� ((Z/(Sv ·
�

Ri
mi))1/e

− the signature is (A, e, v)

− verification: check if

Z =Ae ·Sv ·
�

Ri
mi ?

46

Issuing a certificate for values m1,� ,ml

− somewhat complicated since the Issuer can learn only some attributes to be signed

− method: a two-party protocol to compute CL signature of the Issuer, algorithm draft:

− the user chooses v ′ at random and computes U � Sv ′

·
�

Ri
mi apart from known

attributes that are not included in the product
�

Ri
mi

47

− the user creates a ZKP that U computed in this way, in particular that

− the user knows hidden attributes

− the user uses the same attributes as commited

− the issuer checks the ZKP proofs

− the issuer chooses at random: v ′′ and a prime e

− the issuer computes

Q� Z/
�

U ·Sv ′′

·
�

knownmi
Rmi

�

and A� Q1/e

− (A, e, v ′′) is sent to the user together with a ZKP proof of corectness

− the user computes v� v ′+ v ′′, checks the proof and validity of signature (A, e, v)

48

Presenting a credential

complicated: also involves proofs over encrypted values and the range of attributes. Some
attributes may be revealed, but some must stay hidden.

Moreover, the certificate must not be revealed (to ensure unlinkability) .

some details for verification of certificate without revealing it:

− value mi is chosen for each hidden attribute mi, that is, i∈Ar̄

− the user chooses rA at random and randomizes (A, e, v):

− A′
� A ·SrA, v ′

� v− e · rA

49

− so called t-values computed:

− chosen at random: e,̃ṽ ′

− Z̃ � (A′)ẽ ·Sv ′̃

·
�

Rmi

− these t-values Z̃ and t values from other proofs plus some other data are hashed to get
challenge c

− signatures components (s-values) are derived:

− ê� ẽ + c · e

− v̂ ′
� ṽ ′+ c · v ′

− m̂
i
� mi + c ·mi

50

Credential verification - based on recomputation of t-values and recomputing c.

Z̃ recomputed as:

(A′)ê ·
�

i∈Ar̄
Ri

mi ·S v̂ ′

/

�

Z
�

i�Ar̄
Rmi

�c

− we remove from Z the expressions Rm that correspond to the known attributes

− what is left will cancel the c · e, c · v ′, c ·mi when using the exponents ê , v̂ ′, m̂i

ranges have to be checked, etc

...

51

pragmatic future?

IDENTIFICATION

running wireless communication protocol may enable tracing a user.

Threats:

− explicit exchange of identifiers: an eavsdropper learns who is communicating with whom

− strong cryptographic proofs created during identification: can be misused for proving
presence to the third parties

elimination of explicit identifiers:

− at each communication round Alice and Bob create random nonce (nonces) for the next
round

− even more secure: if n is such a nonce, then Alice uses n′ where n′ is the same as n

except for a limited number of bits at random positions

(so the adversary has to follow Alice and Bob without long interruptions)

52

deniability:

− the idea is that a transcript of a communication (including the answer from the Prover
created with his private key) can be simulated

consequence: a third party has no grounds to believe the communication transcript
presented to him

− wrong example: challenge-response algorithm with digital signature:

1. the Verifier selects x at random and sends to the Prover

2. the Prover returns his signature s over x

53

simple deniable protocol based on DH

unfortunately: s can serve as a proof of the claim of the Verifier: “I have talked to
Prover” if x is a signature of the Verifier or somthing that only could be created by
the Verifier

− good example: static Diffie-Hellman protocol

− good example: Stinson-Wu for Prover with the key pair (a,A= ga)

1. Verifier chooses x at random, computes X : =gx and Y � Hash(Ax)

2. Verifier sends X,Y to Prover

3. Prover computes Z� Xa and aborts if Y � Hash(Z)

4. Prover sends Z

5. Verifier accepts iff Z =Ax

54

Stinson-Wu protocol

− Stinson-Wu does not create an oracle for DH Problem, Verifier must send a challege for
which somebody knows x

− it is untrue that Verifier must know x:

Preparation:

− Eve creates correct X,Y as well as EncHash(Z)(x)

− Eve sends these data to Verifier

Identification:

− Verifier sends X,Y to Prover

− Prover computes Z� Xa and aborts if Y � Hash(Z)

− Prover sends Z

− Verifier computes Hash(Z) and uses it as a key to decrypt and derive x

− Verifier accepts iff Z =Ax

Proof of Interaction: Verifier returns x to Eve as a proof of interaction with
Prover

55

Anonymous Transactions

idea:

• transactions records publicly available in a distributed ledger (DLT) ⇒ undeniability, no
backdating, possibility to detect double spending (ifhtext-dotsi) , anti Money Laundering
(ifhtext-dotsi) htext-dotsi

• however, we must not create a public Big Brother

core mechanism for digital currencies:

cash hides money flow, this should be the key property of digital money as well

examples below will be taken from Monero

56

User keys and hidden recipient

user keys (EC notation):

− private keys a, b

− public keys: A= a ·G, B= b ·G

− sometimes (a,B) revealed (tracking key) – if the transactions have to be deanonymized

57

Creating transaction with a hidden recipient: (Alice sends to Bob)

− Alice fetches the public key (A,B)

− Alice chooses r at random, R� r ·G

− Alice generates one-time public key P : =Hash(r ·A) ·G+B

− Alice uses P as a one-time destination key for the transaction containing metadata R

58

Receiving a transaction by Bob

− Bob tries each transaction posted:

→ compute P ′
� Hash(a ·R) ·G+B

→ if this is the right transaction, then P =P ′ and Bob knows it is for him

− Bob calculates the one-time private key:

x=Hash(a ·R)+ b

− Bob can spend the money obtained in the transaction by signing with x

Remarks:

1: Receiving a transaction possible with (a,B), while (a,B) does not enable to compute x

2: Still only a partial anonymity: using x and the public key P would indicate who has got
transaction with P from Alice

59

One time ring signatures

idea:

− instead of signing with x and showing P , a ring signature created:

− a set of public keys P1, P2,� ., Pm from transactions chosen at random (transaction
value must be the same)

− x used for signing

− any two ring signature of this kind created with x will be linked immediately

Goals achieved:

− double spending exposed

− m-anonymity concerning where the e-coin comes from

60

signing a transaction with P and private x for P

double spending problem and detection

Creating one-time ring signature

for key pair (x, P)

1. compute image key

I� x ·Hash(P)

2. choose a ring of keys P (P0,� ., Pn) where Ps=P for some s

3. choose q0,� ., qn at random

4. choose w0,� ., wn at random, except for ws

5. calculate for i� s

Li� qi ·G+wi ·Pi

6. calculate Ls� qs ·G

61

7. calculate for i� s

Ri� qi ·Hash(Pi)+wi · I

8. calculate Rs� qs ·Hash(Ps)

9. calculate the non-interactive challenge:

c� Hash(message, L0,� ., Ln, R0,� ., Rn)

10. calculate individual components:

− for i� s: ci=wi, and ri= qi

− cs� c−
�

i� s
ci

− rs� qs− cs ·x

11. output signature (I , c0,� ., cn, r0,� ., rn)

62

Verification

Li recomputed as Li
′
� ri ·G+ ci ·Pi

Ri recomputed as Ri
′
� ri ·Hash(Pi)+ ci · I

test:

�

ci=Hash(message, L0
′ ,� ., Ln

′ , R1
′ ,� ., Rn

′)

63

Linking:

via the same I

Concept used:

to close the ring somewhere a schnorr signature must be created that applies to two generators
simultaneously:

• Ps (which is hidden)

• I (which is explicit)

Many extensions possible (e.g. a transaction signed with multiple keys)

64

65

do not trust too much to anonymity of ring
signatures

