
copyright: Mirosław Kutyłowski, Politechnika Wrocławska

Security and Cryptography 2022

III. Malicious Devices

Mirosław Kutyłowski

1

Standards:

It is not true that a standard solution is by definition a secure solution.

Standardization process:

• representatives of countries, not necessarily specialists

• strong representation of interests of industry

• target: a unified solution

• no open evaluation as in case of e.g. NIST competitions

• long process, many standards never used in practice

Example: ANSI X9.31 PRG

• approved PRNG by FIPS and NIST between 1992 and 2016

• now deprecated by NIST

• many devices based on X9.31 have FIPS certificates, widely used

2

Algorithm

→

initialization - seeding: select initial seed s=(K,V), with random V and pre-generated key K

− K used for the lifetime of the device

− V will change

→ generate (generating bits and changing the internal state):

1. input the current state si−1=(K,Vi−1) and the current timestamp Ti

2. intermediate value: Ii� EncK(Ti)

3. output: Ri� EncK(Ii⊕Vi−1)

4. state update: Vi� EncK(Ri⊕ Ii)

3

Problems with seeding:

•

NIST standard says: “This K is reserved only for the generation of

pseudo-random numbers”, and explains length,

• NIST standard does not say how K is generated

• consequences:

→ certification documentation may skip the problem of generating K

→ in some cases the key is encoded in software or hardware and the same for all devices

and there is no reason to reject application for a certificate

4

an attack is based on the key K recovered from software

1. observe Ri and Ri+1

2. guess timestamp Ti, Ti+1 and check that :

DecK(Ri+1)⊕EncK(Ti+1)=EncK(Ri⊕EncK(Ti))

where the sides of the equation are equal to:

(Ii+1⊕Vi)⊕ Ii+1=EncK(Ri⊕ Ii)

Vi=Vi

3. if the test shows equality, then the timestamps are ok and Vi appears on both sides

4. having K and Vi one can recover states forwards and backwards each time adjusting the
guesses for timestamp – as long as the (portions) of the generated sequence are available.
For backwards:

→ Rt=EncK(It⊕Vt−1), so Vt−1=DecK(Rt)⊕ It

→ having Vt−1 compute Rt−1=DecK(Vt−1)⊕ It−1

5

the attack requires the key K and guessing two consecutive timestamps

→ implementations do not care about it and use consecutive outputs e.g. for DH exponent,
separating them would help

→ presenting two output blocks of the PRNG is necessary for the attack – so presenting at most
one block would help

→ it would help to use DH exponent as a hash of the output of PRNG and some data hard to
guess by the attacker, but many protocols do not do it

→ attacking either side may help for DH, but for RSA key transport the party choosing the secret
must be affected

6

DUAL EC -standardized backdoor

−

NIST, ANSI, ISO standard for PRNG, from 2006 till 2014 when finally withdrawn

− problems reported during standardization process: bias that would be unacceptable for construc-
tions based on symmetric crypto, finally 2007 a paper of Dan Shumow and Niels Ferguson with
an obvious attack based on kleptography (199*)

− DUAL EC dead for crypto community since 2007 but not in industry

• deal NSA -RSA company (RSA was paid to include DUAL EC)

• products with FIPS certification had to implement Dual EC, no certificate when P and Q

generated by the device

• generation of own P and Q discouraged by NIST

• used in many libraries: BSAFE, OpenSSL, ...

• in 2007 an update of Dual EC that makes the backdoor more efficient

• changes in the TCP/IP to ease the attack (increasing the number of consecutive random bits
sent in plaintext)

7

algorithm:

− basic scheme:

→ state si+1= f(si), where s0 is the seed

→ generating bits: ri: =g(si)

→ both f anf g must be one-way functions in a cryptographic sense

− Dual EC, basic version:

→ points P and Q “generated securely” by NSA but information classified,

→ si+1: =x(si ·P) (that is, the “x” coordinate of the point on an elliptic curve)

→ ri: =x(si ·Q)

→ this option used in many libraries

− Dual EC with additional input:

→ if additional input given then update is slightly different:

→ ti� si⊕H(additonalinputi), si+1� x(ti ·P)

8

Attack: with a backdoor d, where P = d ·Q

− for basic version:

→ from ri reconstruct the EC point Ri (immediate, two options)

→ compute si+1 as x(d ·Ri) (no knowledge of the internal state si required)

− for additional input:

− it does not work in this way since the ⊕ operation is algebraically incompatible with scalar
multiplication with the points of elliptic curve

− however it does not help much: frequently more than one block ri is needed by the consuming
application and simply the next step(s) is executed without additional input – at this moment
the adversary learns the internal state

− the attacker have problems if cannot trace the additional input: gradually looses control over
the state of PRNG

9

Dual EC 2007:

− an update to “increase security”

− an extra step after request for bits, before using additional input:

→ si+1� x(si ·P),

→ ti+1� si+1⊕H(additional inputi+1)

→ si+2� x(ti+1 ·P)

→ ri+2� x(si+2 ·Q)

− attack:

− reconstruct si+1� x(d ·Ri)

− compute ti+1 and si+2 for guessed additional input, then check against ri+2 (the test works also if
ri+2 is used as an exponent for DH and only the result of exponentiation is visible for the attacker

Practical attack issues:

− some products do not use entire ri and skip some number of bits. Frequently this is 16 bits – which
makes the attack 216 times longer. Truncating say 100 bits would secure the design, but this is not done

− some protocols disclose the original PRNG output. Then increasing the size of such a block eases the
attack, as some steps are executed without additional input and the time complexity goes down

10

Kleptography

• dual EC is onl one example of kleptography, unfortunately “in the field”

• idea:

− install a trapdoor in a device

− the trapdoor usess a “public key”

− the attacker holds a matching private key

− the output of the device is indistinguishable from the output of the honest machine

− with the private key one can break security of the device, get access to secret information, etc

− .. while with the “public key” this is impossible

• if one can find the kleptographic code in the device then the attack is evident, but what if tamper
resistant?

11

Example: generating Schnorr signatures

• the malicious device contains U = gu, the attacker knows u

• creating 1st signature:

1. k chosen at random, r: =gk

2. e� Hash(M, r)

3. s� k− e ·x

4. output (s, e), retain k

• creating 2nd signature

1. k ′
� Hash(Uk), r ′� gk

′

2. e′� Hash(M ′, r ′)

3. s′� k ′− e′ · x

• attacker getting the secret x no matter how well it has been created:

1. r� gs ·Xe

2. k ′
� Hash(ru)

3. x� (k ′− s′)/e′

12

Example: Diffie Hellman key exchange

• the malicious device contains U = gu, the attacker knows u

• key exchange i :

1. ka chosen somehow

2. ca� gka

3. K� cb
ka

• key exchange i+1:

1. ka
′
� Hash(Uka),

2. ca
′
� gka

′

3. K ′
� cb

′ka

′

• attacker getting session key K:

1. ka
′
� Hash(ca

u)

2. K ′
� cb

′ka

′

warning: it suffices to have a malicious device on one side to tap the line!

13

Example: slow leakage via a random string

• the malicious device contains U = gu, the attacker knows u, secret s to be leaked

• leaking, when PRNG secure:

1. cryptographic boundary: k chosen at random,

2. then r: =gk computed outside PRNG, V � Uk

3. a� (k most significant bits of V)

4. test: if bit k+1 of V is different from ath bit of s then return to 1

5. proceed with the original protocol, r exported as part of the output

• attacker:

1. gets a cryptographic message with r

2. V � ru

3. a� (k most significant bits of V)

4. retrieve the ath bit of s as bit k+1 of V

so separating generation of k is a secure perimeter helps to launch the attack: PRNG does not know what
is going on outside and creates r’s on demand

Furthermore: what if PRNG uses this procedure to leak own internal state? This is why we need the reseed
procedure with entropy input.

14

Practical issues

• existence of a kleptographic code can be detected by power and time analysis,

• e.g. in case of Schnorr signatures 2 exponentiations instead of 1: total time can be hidden
by speeding up, but not the statistical characteristics (average deviation of computation
time for 2 exponentiations is smaller than in case of 1 (2xslower) exponentiation

• clever complicated constructions that take it into account

Further threats

• generating RSA keys so that the adversary can get the private key from the public one

15

Defense - reverse firewall

on top of the PRNG there is a deterministic procedure RF with a secret key installed by the
user

it sanitizes the output of PRNG

Example: generating gk for a random k:

i. PRNG outputs gk

ii. RF computes k ′
� EncSK(g

k)

iii. PRNG decrypts k ′ to check its correctness

iv. PRNG adjusts k� k+ k ′mod q, and recomputes gk

v. RF checks that the new gk equals the old gk times gk
′modq

PRNG outputs gk

16

ANAMORPHIC PROTOCOLS

a device D pretends to execute a protocol A

but

in fact D executes a protocol B

while

an extended inspection of D does not reveal that it is not executing protocol A

Extended inpection: auditor may get

→ ephemeral random values used

→ private keys

(not always possible: signing keys before revocation must not be revealed)

17

ANAMORPHIC PROTOCOLS -ENCRYPTION

A normal ciphertext C created with “official” encryption key PK:

• contains a ciphertext Z created with dual key Kdual

• Z cannot be detected even if the private decryption key SK corresponding to PK

18

ANAMORPHIC RSA

RSA is deterministic, but RSA padding is randomized

RSA- OEAP: encryption of message m:

• m is padded with k1 zeros to get a string of n− k0 bits,

• a string r of length k0 is chosen at random,

• hash function G is used to get G(r) consisting of n− k0 bits,

• X� (m || 0� 0)⊕G(r) ,

• Y � r⊕H(X) where the hash function H yields k0 bit outputs,

• the RSA function is applied to u=X ||Y

19

ANAMORPHIC RSA

• m is padded with k1 zeros to get a string of n− k0 bits,

• a string r of length k0 is chosen at random,

• hash function G is used to get G(r) consisting of n− k0 bits,

• X� (m || 0� 0)⊕G(r) ,

• Y � r⊕H(X) where the hash function H yields k0 bit outputs,

• the RSA function is applied to u=X ||Y

Decryption:

− get X ||Y

− r� Y ⊕H(X)

− calculate X ⊕G(r) to get m

− reject if X ⊕G(r) have not suffix of k1 zeroes

20

ANAMORPHIC ENCRYPTION

r is not random anymore but

Encdkey(hiddenmessage)

where Enc is a encryption scheme that assures that the ciphertexts are not distinguishable
from random strings even if the plaintexts are known

21

ElGamal HYBRID ENCRYPTION with ANAMORPHIC CIPHER-
TEXT

Hybrid encryption:

• choose k at random,

• choose symmetric key K at random,

• create a ciphertext (a, b)� (PKk ·K, gk), where PK is the public key of the receiver,

• c� EncK(m0) where m0 is the payload data,

• output (a, b, c)

22

Anamorphic version

• choose k calculate b� gk ,

• calculate z� Hash(sdk, b) and d= gz (sdk is the secret dual key)

• calculate a� d ·m1 ,

• calculate K� a/PKk

• c� EncK(m0) where m0 is the payload data,

• output (a, b, c)

standard decryption procedure to derive K and then m0

retreiving m1

• z� Hash (sdk, b), d� gz

• m1� d/a

23

ANAMORPHIC SIGNATURES

goal: transmit a signature within a ciphertext in anamorphic way

(illegal data traffic – without authentication the data are deniable)

realisation: hybrid ElGamal encryption carrying hidden ciphertexts

24

ANAMORPHIC SIGNATURES in ELGAMAL HYBRID CIPHER-
TEXT

ElGamal encryption (normal) of m0

i. choose at random a symmetric encryption key K and an exponent k,

ii. calculate c0� (PKk ·K, gk), and c1� EncK(m0)

iii. output (c0, c1)

Anamorphic version

i. choose an exponent k at random,

ii. s� k− x ·Hash (m1, g
k) where x is the private signing key,

iii. K� Encdkey(s) ,

iv. c0� (PKk ·K, gk), c1� EncK(m0),

v. output (c0, c1)

25

ANAMORPHIC SIGNATURES in ELGAMAL HYBRID CIPHER-
TEXT

ElGamal encryption (normal) of m0

i. choose at random a symmetric encryption key K and an exponent k,

ii. calculate c0� (PKk ·K, gk), and c1� EncK(m0)

iii. output (c0, c1)

26

Anamorphic version

i. choose an exponent k at random,

ii. s� k− x ·Hash (m1, g
k) where x is the private signing key,

iii. K� Encdkey(s) ,

iv. c0� (PKk ·K, gk), c1� EncK(m0),

v. output (c0, c1)

Retreiving signature from (c0, c1):

i. parse c0 as (a, r),

ii. K� a/rsk ,

iii. s� Decdkey(K) ,

iv. e� Hash(m1, r),

v. output the Schnorr signature (s, e)

27

DERANDOMIZED CRYPTOGRAPHIC PROTOCOLS

problem:

− any randomness may be used to leak data

− PRNG may turn out to be weak (aging, etc)

most of crypto protocols use random numbers

solution: what we need is not really randomness but inpredictability

28

EdDSA

→ essentially it is a DSA algorithm htext-dotsi

→ except for generating the random exponent k:

• old version: choose k at random

• EdDSA: k = Hash(M, x) where M is the message to be signed and x is an extra
secret key

→ output of a good hash function should be indistinguishable from random

→ verification test is the same htext-dotsi

→ but unfortunately k is not checked — and a malicious device can cheat

29

HARDWARE TROJANS

goal of a Trojan: change hardware so that the chip functionally seems to work as claimed, but it opens a
backdoor for the attacker

attack moment:

− chip planning (easy)

− chip manufacturing (hard)

− hardware components from third parties (easy)

− outsourcing fabrication (likely to occur due to production line costs)

methods of testing:

− functional tests (not really helpful for trapdoors, the most dangerous are hidden faults that do not
disrupt operation)

− internal tests circuitry (putting some values and observing results on single components along so
called test path, or dedicated tests like checking CRC of memory contents)

− distructive - chemical-mechanical polishing and inspection under microscope etc, it can detect mod-
ifications on layout level, very costly procedure, specialized labs necessary

− side channel information (especially comparing with a “golden chip” behavior – the chip that is
ideal and follows the specification) - delay path analysis, static current analysis, transient current analysis

30

classical attacks: the trojans should remain undetected during the testing phase, so the attack has to be
triggered by an unlikely event. Options used:

− an attack triggered by an unlikely event known to the attacker but not to the evaluator

− an attack starts when some counter reaches a certain value

− attack occurs due to aging or via a random event (e.g. for enabling fault analysis)

some countermeasures:

− regions: design a chip so that it consists of “regions”

− for each region there must be a test path so that the activities are concentrated in this region while
the rest stays almost idle,

− then the side channel (such as energy usage) may be attributed to that region

− a hardware Trojan should be concentrated in some region and then substantially change the side
channel of that region

− avoid rare-triggered nets

− insert configurable security monitors

− variant-based parallel execution of the same function

31

Analog attack: A2

goal: in a certain situation change a priviledge bit (the rest of the attack follows some scenario)

limitations:

− no change in a digital circuit, only some analog parts added

− very limited regarding area (so playground for ASICs, which are less optimized – less compressed)

− trojans preferably in layer 1 to avoid collisions with routing etc

construction idea:

− a single capacitor added,

− the capacitor is loaded each time a triggering event occurs

− if triggering events occur in a short period of time, then the capacitor loaded to a certain voltage causing
a flip-flop operation to occur (changing a bit to a predefined value)

− the capacitor discharged gradually so if triggering events occur infrequently, then the flip-flop operation
never executed

32

a more robust construction:

− choosing relative capacity of capacitors one can control the number of triggering events needed

Figure 1.

(from paper: A2: Analog Malicious Hardware, Kaiyuan Yang, Matthew Hicks, Qing Dong, Todd Austin,
Dennis Sylvester)

33

Figure 2.

34

transistor M0: allows flow at low voltage, transistor M1: allows flow at high voltage

detector: it could be for instance an inverter – changing the output would create some malicious conse-
quences

extensions:

− use a few such analog circuits and combine them

− e.g.: both must “fire” (AND operation), one of them suffices (“OR”) – in theory any circuit possible
however the attacker is limited by space available

35

Dopant Trojans

CMOS inverter: (image Wikipedia)

Figure 3.

where: A is the source, Vdd positive supply , Vss is ground

upper transistor: PMOS (allows current flow at low voltage)

lower transistor: NMOS (allows current flow at high voltage)

how it works:

− if voltage is low, then the lower transistor (NMOS) is in high resistance state and the current from Vdd
flows to Q (high voltage)

− if voltage is high, then the upper transistor MOS) is in high resistance state and the current from Vss
flows to Q while Vdd has low voltage

36

PMOS: in dopant area “holes” (positive) playing the role of conductor, low voltage creates depletion area
- no flow is possible anymore, high voltage attracts holess and eliminates depletion area

NMOS: in dopant area electrons (negative) playing the role of conductor, high voltage pushes the electrons
out and creates depletion area

For physical realization of a transistor see excellent videos from

https://www.youtube.com/watch?v=7ukDKVHnac4&t=116s

https://www.youtube.com/watch?v=stM8dgcY1CA

37

CMOS inverter in the “bird eye perspective”:

38

(nice diagram from EPFL, “Design of VLSI Systems”)

39

Trojan design:

40

The idea is to inject wrong dopant and thereby disable or enable connection regardless of the voltage

− whatever happens the VDD is connected to the output

− whatever happens the VSS is disconnected with the output

Detailed pictures from the original paper:

41

42

Trojan True Random Number Generator consists of

− entropy source (physical)

− self test circuit (OHT - online health test)

− deterministic RNG, Intel version:

generate 128-bit numbers when the internal state is (K, c) (by “rate matcher”):

1. c� c+1, r� AESK(c), output r

2. c� c+1, x� AESK(c)

3. c� c+1, y� AESK(c)

4. K� K ⊕x

5. c� c⊕ y

− reseeding (by “conditioner”)

1. c� c+1, x� AESK(c)

2. c� c+1, y� AESK(c)

3. K� K ⊕x⊕ s

4. c� c⊕ y⊕ t

43

attack option 1: fix K by applying Trojan transistors, if K is known, then it is easy to find internal
state c from r and then the consecutive random numbers r

attack option 2: fix all but n bits of c then only n bits of entropy and the output r has only n entropy
bits - to the attack does not need to see anything, just prediction possible (helpful e.g. against randomized
signature schemes)

problem with Built-In-Self-Test: implemented according to FIPS: after power-up the RNG is tested
against aging:

− known LFSR creates bits strings for conditioner and rate matcher, entropy source disabled, a 32-bit
CRC from the result computed and checked against a known value,

− knowing the test one can find how to manipulate K and c without detection, simple exaustive search
can be applied

44

Side channel Trojan:

− side channel resistant logic: Masked Dual Rail Logic

i. for each a both a and <neg>a computed

ii. precharge: each phase preceded by charging all gates

iii. masking operations by random numbers

45

computing a∧ b :

− input a⊕m, a⊕¬m, b⊕m, b⊕¬m, m, ¬m

− detection, SR-latch stage and majority gate

gates on the picture: OR – 3 gates in the detection , AND - the right gate in the Detection, NOR (output
1 if all inputs 0)- the OR gate with a dot

SR-latch is a bi-stable circuit. It remains stable in the state (0,1) and in (1,0). These values encode two
bitvalues

46

see https://www.allaboutcircuits.com/textbook/digital/chpt-10/s-r-latch/

47

attacking not-majority gate (original picture):

Idea: instead of cutting output there is low voltage in a certain situation

− the same behavior except for A=1 and B,C =0, where good output but high power consumption due
to connection between VDD and VSS

− the upper pair of transistors do not disappear from the layout but are changed so that in fact constant
connections are created.

48

− weakness of the transistors is created via reducing dopant areas (dopant creates free electrons or hole
that may “jump”. Alone reducing the size of active area makes a transistor weak.

− computing majority works as normal except for the case that am=0, bm=1,m=1 or

ā
m
=0, b̄m=1, m̄=1. In both cases we have a=1, b=0

− high power consumption can be detected, in this way we learn the internal state

49

Artificial aging

make some transistors disfuctional (as ithe case of PRNG)

method:

− apply too high voltage at certain areas

− the electrons accelerate and break barrier - damages

− effect the same as of aging a chip

− the transistor changes its operational characteristic

50

Problems:

– Trojan may be triggered by some particular event, detection becomes harder

– Trojan may work in very particular physical conditions, e.g. temperature, voltage

Defense methods:

− on-chip checks: detection of unexpected behavior, e.g. delay characteristics: workload path and a shadow
path that provides result after fixed time, + comparison

− ring osscilators on the chip detecting nonstandard behavior

− methods to enable activation in certain areas only

− inserting PUFs, (either randomize as much as possible - noise over trojan information)

− keep algorithms deterministic

− secure coding: take into account the situation that certain components are not working properly

− external watchdog techniques

51

FPGA

relatively easy Trojans:

− in order to customize to a given application we upload to FPGA a LUT bitstream

− the mapping is proprietary and a user works only with a high level description

− htext-dotsi reverse engineering possible

− and just change the bitstream for the victim

Difficulty:

− find a way to change just a few bits to convert to a malicious device

− .. the people did it

Practice:

− much easier than dopant Trojans

− attack target may be a single FPGA

− harder to accuse the attacker (dopant Trojans are detectable with high level equipment, there are plenty
copies of malicious chip htext-dotsi)

52

Sophisticated design problems

motto: high level description might be perfect, but some advanced mechanisms in hardware that are invisible
to users may create trapdoors

situation: low level hardware details are frequently proprietary information

Meltdown – an old attack on modern processors

• standard acceleration technique: out-of-order execution of commands:

− instead of executing just the current operation i, the processor executes operations i, i+1, <ldots>,
i+ k

− apart from the current operation, the next ones are executed conditionally: if the execution of opera-
tions i, i+1,� , i+ j − 1 have influence on the input of operation i+ j, then the result for operation
i+ j executed in advance is discarded

− htext-dotsi the way to speed up when the hardware has reached its limits

53

• kernel and checking access rights:

− the system is organized as “secure operating system” - (recall FIPS!)

− logically the rules are strict: access rights checked so a user cannot access restricted data in the
protected kernel area

− it takes care of read/write access in the sense of the operating system

− htext-dotsi but there are indirect ways to learn the data

54

Core idea

goal: read arbitrary memory address by an unpriviledged user

instruction sequence

1; rcx = kernel address

2; rbx = probe array

3 retry:

4 mov al, byte [rcx] reading a byte from protected address rcx to al

5 shl rax, 0xc multiplying rax by 4096 , so the byte from al is shifted

6 jz retry jump due to some bias to 0 in al

7 mov rbx, qword [rbx + rax] reading from location rbx+rax

How it is executed:

− the instruction 4 leads to violation of access rights and consequently it will be interrupted, with temporary
values erased

− in the meantime instructions 5-7 might be executed in advance, all results retired after interrupt – except
for the effects of accessing the cache

55

Cache

− cache is necessary: gap between CPU speed and latency of memory access, innermost cache access≈0.3ns,
main memory access ≈50ns to 150ns

− set-associative memory cache:

− cache line (cache block) of B bytes

− a row consisting of W cache lines

− S cache sets, each consisting of a row

56

− when a cache miss occurs, then a memory block is copied into one of cache lines evicting its previous
contents

− a memory block with address a can be cached only into the cache set with the index i such that
i= ⌊a/B⌋modS — this is crucial for the attack

− cache levels: slight complication to the attacks but differences of timing enable to recognize the situation

57

Attack

array rbx has size 256·4096 (256 pages)

mechanism:

− before we execute the code we make sure that the whole array rbx is evicted from the cache

− by overwriting all lines of the cache by different read operations

− during the code execution only one address is fetched to the cache because of cache miss

− provided that instruction 7 is executed before the sequence is retired due to interrupt

− afterwards the attacker reads the whole array rbx page by page:

− all time the cache misses (long execution time) htext-dotsi

− except for the page with the number stored in rcx

58

