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Standards:

It is not true that a standard solution is by definition a secure solution.

Standardization process:

• representatives of countries, not necessarily specialists

• strong representation of interests of industry

• target: a unified solution

• no open evaluation as in case of e.g. NIST competitions

• long process, many standards never used in practice

Example: ANSI X9.31 PRG

• approved PRNG by FIPS and NIST between 1992 and 2016

• now deprecated by NIST

• many devices based on X9.31 have FIPS certificates, widely used
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Algorithm

initialization - seeding: select initial seed s=(K,V ), with random V and pre-generated key K

− K used for the lifetime of the device

− V will change

generate (generating bits and changing the internal state):

1. input the current state si−1=(K,Vi−1) and the current timestamp Ti

2. intermediate value: Ii� EncK(Ti)

3. output: Ri� EncK(Ii⊕Vi−1)

4. state update: Vi� EncK(Ri⊕ Ii)
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Problems with seeding:

•

NIST standard says: “This K is reserved only for the generation of

pseudo-random numbers”, and explains length,

• NIST standard does not say how K is generated

• consequences:

→ certification documentation may skip the problem of generating K

→ in some cases the key is encoded in software or hardware and the same for all devices

and there is no reason to reject application for a certificate
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an attack is based on the key K recovered from software

1. observe Ri and Ri+1

2. guess timestamp Ti, Ti+1 and check that :

DecK(Ri+1)⊕EncK(Ti+1)=EncK(Ri⊕EncK(Ti))

where the sides of the equation are equal to:

(Ii+1⊕Vi)⊕ Ii+1=EncK(Ri⊕ Ii)

Vi=Vi

3. if the test shows equality, then the timestamps are ok and Vi appears on both sides

4. having K and Vi one can recover states forwards and backwards each time adjusting the
guesses for timestamp – as long as the (portions) of the generated sequence are available.
For backwards:

→ Rt=EncK(It⊕Vt−1), so Vt−1=DecK(Rt)⊕ It

→ having Vt−1 compute Rt−1=DecK(Vt−1)⊕ It−1
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the attack requires the key K and guessing two consecutive timestamps

→ implementations do not care about it and use consecutive outputs e.g. for DH exponent,
separating them would help

→ presenting two output blocks of the PRNG is necessary for the attack – so presenting at most
one block would help

→ it would help to calculate DH exponent as: hash(PRNG(),data) where data hard to guess
by the attacker

→ DH key exchange: it is enough to attack any side, for RSA key transport the party choosing
the secret must be attacked
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DUAL EC -standardized backdoor

−

NIST, ANSI, ISO standard for PRNG, from 2006 till 2014 when finally withdrawn

− problems reported during standardization process: bias that would be unacceptable for construc-
tions based on symmetric crypto, finally 2007 a paper of Dan Shumow and Niels Ferguson with
an obvious attack based on kleptography (199*)

− DUAL EC dead for crypto community since 2007 but not in industry

• deal NSA -RSA company (RSA was paid to include DUAL EC)

• products with FIPS certification had to implement Dual EC, no certificate when P and Q

generated by the device

• generation of own P and Q discouraged by NIST (true: one can make mistakes!)

• Dual EC used in many libraries: BSAFE, OpenSSL, ...

• in 2007 an update of Dual EC made the backdoor even more efficient

• changes in the TCP/IP to ease the attack (increasing the number of consecutive random bits
sent in plaintext)
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algorithm:

− basic scheme:

→ state si+1= f(si), where s0 is the seed

→ generating bits: ri: =g(si)

→ both f anf g must be one-way functions in a cryptographic sense

− Dual EC, basic version:

→ points P and Q “generated securely” by NSA but information classified,

→ si+1: =x(si ·P ) (that is, the “x” coordinate of the point on an elliptic curve)

→ ri: =x(si ·Q)

→ this option used in many libraries

− Dual EC with additional input:

→ if additional input given then update is slightly different:

→ ti� si⊕H(addtional
−
inputi), si+1� x(ti ·P )
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Attack: with a backdoor d, where P = d ·Q

− for basic version:

→ from ri reconstruct the EC point Ri (immediate by Elliptic Curve arithmetic , two solutions )

→ compute si+1 as x(d ·Ri) (no knowledge of the internal state si required!!!!)

− for additional input:

− it does not work in this way since the ⊕ operation is algebraically incompatible with scalar
multiplication of elliptic curve point

− it does not help much: if more than one block ri is needed by the consuming application,
then the next step(s) is executed without additional input – at this moment the adversary
learns the internal state
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Dual EC 2007:

− an update to “increase security”

− an extra step after request for bits, before using additional input:

→ si+1� x(si ·P ),

→ ti+1� si+1⊕H(additional inputi+1)

→ si+2� x(ti+1 ·P )

→ ri+2� x(si+2 ·Q)

− attack:

− reconstruct si+1� x(d ·Ri)

− compute ti+1 and si+2 for guessed additional input, then check against ri+2 (the test works also if
ri+2 is used as an exponent for DH and only the result of exponentiation is visible for the attacker

Practical attack issues:

− some products do not use entire ri and skip some number of bits. Frequently this is 16 bits – which
makes the attack 216 times longer. Truncating say 100 bits would secure the design, but this is not done

− some protocols disclose the original PRNG output. Then increasing the size of such a block eases the
attack, as some steps are executed without additional input and the time complexity goes down
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Kleptography

• dual EC is onl one example of kleptography, unfortunately “in the field”

• idea:

− install a trapdoor in a device

− the trapdoor usess a “public key”

− the attacker holds a matching private key

− the output of the device is indistinguishable from the output of the honest machine

− with the private key one can break security of the device, get access to secret information, etc

− .. while with the “public key” this is impossible

• if one can find the kleptographic code in the device then the attack is evident, but what if tamper
resistant?
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Example: generating Schnorr signatures

• the malicious device contains U = gu, the attacker knows u

• creating 1st signature:

1. k chosen at random, r: =gk

2. e� Hash(M, r)

3. s� k− e ·x

4. output (s, e), retain k

• creating 2nd signature

1. k ′
� Hash(Uk), r ′� gk

′

2. e′� Hash(M ′, r ′)

3. s′� k ′− e′ · x

• attacker getting the secret x no matter how well it has been created:

1. r� gs ·Xe

2. k ′
� Hash(ru)

3. x� (k ′− s′)/e′
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Example: Diffie Hellman key exchange

• the malicious device contains U = gu, the attacker knows u

• key exchange i :

1. ka chosen somehow

2. ca� gka

3. K� cb
ka

• key exchange i+1:

1. ka
′
� Hash(Uka),

2. ca
′
� gka

′

3. K ′
� cb

′ka

′

• attacker getting session key K:

1. ka
′
� Hash(ca

u)

2. K ′
� cb

′ka

′

warning: it suffices to have a malicious device on one side to tap the line!
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Example: slow leakage via a random string

• the malicious device contains U = gu, the attacker knows u, secret s to be leaked

• leaking, when PRNG secure:

1. cryptographic boundary: k chosen at random,

2. then r: =gk computed outside PRNG, V � Uk

3. a� (k most significant bits of V )

4. test: if bit k+1 of V is different from ath bit of s then return to 1

5. proceed with the original protocol, r exported as part of the output

• attacker:

1. gets a cryptographic message with r

2. V � ru

3. a� (k most significant bits of V )

4. retrieve the ath bit of s as bit k+1 of V

so separating generation of k is a secure perimeter helps to launch the attack: PRNG does not know what
is going on outside and creates r’s on demand

Furthermore: what if PRNG uses this procedure to leak own internal state? This is why we need the reseed
procedure with entropy input.
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Practical issues

• existence of a kleptographic code can be detected by power and time analysis,

• e.g. in case of Schnorr signatures 2 exponentiations instead of 1: total time can be hidden
by speeding up, but not the statistical characteristics (average deviation of computation
time for 2 exponentiations is smaller than in case of 1 (2xslower) exponentiation

• clever complicated constructions that take it into account

Further threats

• generating RSA keys so that the adversary can get the private key from the public one
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Defense - reverse firewall

on top of the PRNG there is a deterministic procedure RF with a secret key installed by the
user

it sanitizes the output of PRNG

Example: generating gk for a random k:

i. PRNG outputs gk

ii. RF computes k ′
� EncSK(g

k)

iii. PRNG decrypts k ′ to check its correctness

iv. PRNG adjusts k� k+ k ′mod q, and recomputes gk

v. RF checks that the new gk equals the old gk times gk
′modq

PRNG outputs gk
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ANAMORPHIC PROTOCOLS

a device D pretends to execute a protocol A

but

in fact D executes a protocol B

while

an extended inspection of D does not reveal that it is not executing protocol A

Extended inpection: auditor may get

→ ephemeral random values used

→ private keys

(not always possible: signing keys before revocation must not be revealed)
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ANAMORPHIC PROTOCOLS -ENCRYPTION

A normal ciphertext C created with “official” encryption key PK:

• contains a ciphertext Z created with dual key Kdual

• Z cannot be detected even if the private decryption key SK corresponding to PK
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ANAMORPHIC RSA

RSA is deterministic, but RSA padding is randomized

RSA- OEAP: encryption of message m:

• m is padded with k1 zeros to get a string of n− k0 bits,

• a string r of length k0 is chosen at random,

• hash function G is used to get G(r) consisting of n− k0 bits,

• X� (m || 0� 0)⊕G(r) ,

• Y � r⊕H(X) where the hash function H yields k0 bit outputs,

• the RSA function is applied to u=X ||Y
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ANAMORPHIC RSA

• m is padded with k1 zeros to get a string of n− k0 bits,

• a string r of length k0 is chosen at random,

• hash function G is used to get G(r) consisting of n− k0 bits,

• X� (m || 0� 0)⊕G(r) ,

• Y � r⊕H(X) where the hash function H yields k0 bit outputs,

• the RSA function is applied to u=X ||Y

Decryption:

− get X ||Y

− r� Y ⊕H(X)

− calculate X ⊕G(r) to get m

− reject if X ⊕G(r) have not suffix of k1 zeroes

20



ANAMORPHIC ENCRYPTION

r is not random anymore but

Encdkey(hiddenmessage)

where Enc is a encryption scheme that assures that the ciphertexts are not distinguishable
from random strings even if the plaintexts are known
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ElGamal HYBRID ENCRYPTION with ANAMORPHIC CIPHER-
TEXT

Hybrid encryption:

• choose k at random,

• choose symmetric key K at random,

• create a ciphertext (a, b)� (PKk ·K, gk), where PK is the public key of the receiver,

• c� EncK(m0) where m0 is the payload data,

• output (a, b, c)
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Anamorphic version

• choose k calculate b� gk ,

• calculate z� Hash(sdk, b) and d= gz (sdk is the secret dual key)

• calculate a� d ·m1 ,

• calculate K� a/PKk

• c� EncK(m0) where m0 is the payload data,

• output (a, b, c)

standard decryption procedure to derive K and then m0

retreiving m1

• z� Hash (sdk, b), d� gz

• m1� d/a

23



ANAMORPHIC SIGNATURES

goal: transmit a signature within a ciphertext in anamorphic way

(illegal data traffic – without authentication the data are deniable)

realisation: hybrid ElGamal encryption carrying hidden ciphertexts
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ANAMORPHIC SIGNATURES in ELGAMAL HYBRID CIPHER-
TEXT

ElGamal encryption (normal) of m0

i. choose at random a symmetric encryption key K and an exponent k,

ii. calculate c0� (PKk ·K, gk), and c1� EncK(m0)

iii. output (c0, c1)

Anamorphic version

i. choose an exponent k at random,

ii. s� k− x ·Hash (m1, g
k ) where x is the private signing key,

iii. K� Encdkey(s) ,

iv. c0� (PKk ·K, gk), c1� EncK(m0),

v. output (c0, c1)
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ANAMORPHIC SIGNATURES in ELGAMAL HYBRID CIPHER-
TEXT

ElGamal encryption (normal) of m0

i. choose at random a symmetric encryption key K and an exponent k,

ii. calculate c0� (PKk ·K, gk), and c1� EncK(m0)

iii. output (c0, c1)
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Anamorphic version

i. choose an exponent k at random,

ii. s� k− x ·Hash (m1, g
k ) where x is the private signing key,

iii. K� Encdkey(s) ,

iv. c0� (PKk ·K, gk), c1� EncK(m0),

v. output (c0, c1)

Retreiving signature from (c0, c1):

i. parse c0 as (a, r),

ii. K� a/rsk ,

iii. s� Decdkey(K) ,

iv. e� Hash(m1, r),

v. output the Schnorr signature (s, e)
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DERANDOMIZED CRYPTOGRAPHIC PROTOCOLS

problem:

− any randomness may be used to leak data

− PRNG may turn out to be weak (aging, etc)

most of crypto protocols use random numbers

solution: what we need is not really randomness but inpredictability
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EdDSA

→ essentially it is a DSA algorithm htext-dotsi

→ except for generating the random exponent k:

• old version: choose k at random

• EdDSA: k = Hash(M, x) where M is the message to be signed and x is an extra
secret key

→ output of a good hash function should be indistinguishable from random

→ verification test is the same htext-dotsi

→ but unfortunately k is not checked — and a malicious device can cheat
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HARDWARE TROJANS

goal of a Trojan: change hardware so that the chip functionally seems to work as claimed, but it opens a
backdoor for the attacker

attack moment:

− chip planning (easy)

− chip manufacturing (hard)

− hardware components from third parties (easy)

− outsourcing fabrication (likely to occur due to production line costs)

methods of testing:

− functional tests (not really helpful for trapdoors, the most dangerous are hidden faults that do not
disrupt operation)

− internal tests circuitry (putting some values and observing results on single components along so
called test path, or dedicated tests like checking CRC of memory contents)

− distructive - chemical-mechanical polishing and inspection under microscope etc, it can detect mod-
ifications on layout level, very costly procedure, specialized labs necessary

− side channel information (especially comparing with a “golden chip” behavior – the chip that is
ideal and follows the specification) - delay path analysis, static current analysis, transient current analysis
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classical attacks: the trojans should remain undetected during the testing phase, so the attack has to be
triggered by an unlikely event. Options used:

− an attack triggered by an unlikely event known to the attacker but not to the evaluator

− an attack starts when some counter reaches a certain value

− attack occurs due to aging or via a random event (e.g. for enabling fault analysis)

some countermeasures:

− regions: design a chip so that it consists of “regions”

− for each region there must be a test path so that the activities are concentrated in this region while
the rest stays almost idle,

− then the side channel (such as energy usage) may be attributed to that region

− a hardware Trojan should be concentrated in some region and then substantially change the side
channel of that region

− avoid rare-triggered nets in a device

− insert configurable security monitors

− variant-based parallel execution of the same function
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Analog attack: A2

goal: in a certain situation change a priviledge bit (the rest of the attack follows some scenario)

limitations:

− no change in a digital circuit, only some analog parts added

− very limited regarding area (so playground for ASICs, which are less optimized – less compressed )

− trojans preferably in layer 1 to avoid collisions with routing etc

construction idea:

− a single capacitor added,

− the capacitor is loaded each time a triggering event occurs

− if triggering events occur in a short period of time, then the capacitor loaded to a certain voltage causing
a flip-flop operation to occur (changing a bit to a predefined value)

− the capacitor discharged gradually so if triggering events occur infrequently, then the flip-flop operation
never executed
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a more robust construction:

− choosing relative capacity of capacitors one can control the number of triggering events needed

Figure 1.

(from paper: A2: Analog Malicious Hardware, Kaiyuan Yang, Matthew Hicks, Qing Dong, Todd Austin,
Dennis Sylvester)
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Figure 2.
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transistor M0: allows flow at low voltage, transistor M1: allows flow at high voltage

detector: it could be for instance an inverter – changing the output would create some malicious conse-
quences

extensions:

− use a few such analog circuits and combine them

− e.g.: both must “fire” (AND operation), one of them suffices (“OR”) – in theory any circuit possible
however the attacker is limited by space available
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Dopant Trojans

CMOS inverter: (image Wikipedia)

Figure 3.

where: A is the source, Vdd positive supply , Vss is ground

upper transistor: PMOS (allows current flow at low voltage)

lower transistor: NMOS (allows current flow at high voltage)

how it works:

− if voltage is low, then the lower transistor (NMOS) is in high resistance state and the current from Vdd
flows to Q (high voltage)

− if voltage is high, then the upper transistor MOS) is in high resistance state and the current from Vss
flows to Q while Vdd has low voltage

36



PMOS: in dopant area “holes” (positive) playing the role of conductor, low voltage creates depletion area
- no flow is possible anymore, high voltage attracts holess and eliminates depletion area

NMOS: in dopant area electrons (negative) playing the role of conductor, high voltage pushes the electrons
out and creates depletion area

For physical realization of a transistor see excellent videos from

https://www.youtube.com/watch?v=7ukDKVHnac4&t=116s

https://www.youtube.com/watch?v=stM8dgcY1CA
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CMOS inverter in the “bird eye perspective”:
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(nice diagram from EPFL, “Design of VLSI Systems”)
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Trojan design:
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The idea is to inject wrong dopant and thereby disable or enable connection regardless of the voltage

− whatever happens the VDD is connected to the output

− whatever happens the VSS is disconnected with the output

Detailed pictures from the original paper:
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Trojan True Random Number Generator consists of

− entropy source (physical)

− self test circuit (OHT - online health test)

− deterministic RNG, Intel version:

generate 128-bit numbers when the internal state is (K, c) (by “rate matcher”):

1. c� c+1, r� AESK(c), output r

2. c� c+1, x� AESK(c)

3. c� c+1, y� AESK(c)

4. K� K ⊕x

5. c� c⊕ y

− reseeding (by “conditioner”)

1. c� c+1, x� AESK(c)

2. c� c+1, y� AESK(c)

3. K� K ⊕x⊕ s

4. c� c⊕ y⊕ t
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attack option 1: fix K by applying Trojan transistors, if K is known, then it is easy to find internal
state c from r and then the consecutive random numbers r

attack option 2: fix all but n bits of c then only n bits of entropy and the output r has only n entropy
bits - to the attack does not need to see anything, just prediction possible (helpful e.g. against randomized
signature schemes)

problem with Built-In-Self-Test: implemented according to FIPS: after power-up the RNG is tested
against aging:

− known LFSR creates bits strings for conditioner and rate matcher, entropy source disabled, a 32-bit
CRC from the result computed and checked against a known value,

− knowing the test one can find how to manipulate K and c without detection, simple exaustive search
can be applied
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Side channel Trojan:

− side channel resistant logic: Masked Dual Rail Logic

i. for each a both a and ¬a computed

ii. precharge: each phase preceded by charging all gates

iii. masking operations by random numbers
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computing a∧ b :

− input a⊕m, a⊕¬m, b⊕m, b⊕¬m, m, ¬m

− detection, SR-latch stage and majority gate

gates on the picture: OR – 3 gates in the detection , AND - the right gate in the Detection, NOR (output
1 if all inputs 0)- the OR gate with a dot

SR-latch is a bi-stable circuit. It remains stable in the state (0,1) and in (1,0). These values encode two
bitvalues
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see https://www.allaboutcircuits.com/textbook/digital/chpt-10/s-r-latch/
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attacking not-majority gate (original picture):

Idea: instead of cutting output there is low voltage in a certain situation

− the same behavior except for A=1 and B,C =0, where good output but high power consumption due
to connection between VDD and GND

− the upper pair of transistors do not disappear from the layout but are changed so that in fact constant
connections are created.
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− weakness of the transistors is created via reducing dopant areas (dopant creates free electrons or hole
that may “jump”. Alone reducing the size of active area makes a transistor weak.

− computing majority works as normal except for the case that am=0, bm=1,m=1 or

ā
m
=0, b̄m=1, m̄=1. In both cases we have a=1, b=0

− high power consumption can be detected, in this way we learn the internal state
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Artificial aging

make some transistors disfuctional (as ithe case of PRNG)

method:

− apply too high voltage at certain areas

− the electrons accelerate and break barrier - damages

− effect the same as of aging a chip

− the transistor changes its operational characteristic
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Problems:

– Trojan may be triggered by some particular event, detection becomes harder

– Trojan may work in very particular physical conditions, e.g. temperature, voltage

Defense methods:

− on-chip checks: detection of unexpected behavior, e.g. delay characteristics: workload path and a shadow
path that provides result after fixed time, + comparison

− ring osscilators on the chip detecting nonstandard behavior

− methods to enable activation in certain areas only

− inserting PUFs, (either randomize as much as possible - noise over trojan information)

− keep algorithms deterministic

− secure coding: take into account the situation that certain components are not working properly

− external watchdog techniques

51



FPGA

relatively easy Trojans:

− in order to customize to a given application we upload to FPGA a LUT bitstream

− the mapping is proprietary and a user works only with a high level description

− � reverse engineering possible

− ... just change the bitstream for the victim

Difficulty:

− find a way to change just a few bits to convert to a malicious device

− .. the people did it

Practice:

− much easier than dopant Trojans

− attack target – a single FPGA

− harder to accuse the attacker (software could be changed by anybody)
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Sophisticated design problems

motto: high level description might be perfect, but some advanced mechanisms in hardware
that are invisible to users may create trapdoors

situation: low level hardware details are frequently proprietary information

Meltdown – an old attack on modern processors

standard acceleration technique: out-of-order execution of commands:

− instead of executing just the current operation i, the processor executes operations i,
i+1, � , i+ k

− apart from the current operation, the next ones are executed conditionally: if the execution
of operations i, i+1,� , i+ j− 1 have influence on the input of operation i+ j, then the
result for operation i+ j executed in advance is discarded

− (this is the way to speed up when we cannot increase clock frequency anymore)

53



• kernel and checking access rights:

− the system is organized as “secure operating system” - (recall FIPS!)

− logically the rules are strict: access rights checked so a user cannot access restricted
data in the protected kernel area

− it takes care of read/write access in the sense of the operating system

− � but there are indirect ways to learn the data
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Core idea: goal: read arbitrary memory address by an unpriviledged user

instruction sequence

1; rcx = kernel address

2; rbx = probe array

3 retry:

4 mov al, byte [rcx] reading a byte from protected address rcx to al

5 shl rax, 0xc multiplying rax by 4096 , so the byte from al is shifted

6 jz retry jump due to some bias to 0 in al

7 mov rbx, qword [rbx + rax] reading from location rbx+rax

How it is executed:

− the instruction 4 leads to violation of access rights and consequently it will be interrupted,
with temporary values erased

− in the meantime instructions 5-7 might be executed in advance, all results retired after
interrupt – except for the effects of accessing the cache
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Cache

− cache is necessary: gap between CPU speed and latency of memory access, innermost
cache access ≈0.3ns, main memory access ≈50ns to 150ns

− set-associative memory cache:

− cache line (cache block) of B bytes

− a row consisting of W cache lines

− S cache sets, each consisting of a row

cache line cache line cache line cache line ← cache set

cache line cache line cache line cache line

cache line cache line cache line cache line

cache line cache line cache line cache line

cache line cache line cache line cache line
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− when a cache miss occurs, then a memory block is copied into one of cache lines
evicting its previous contents

− a memory block with address a can be cached only into the cache set with the index
i such that i= ⌊a/B⌋modS — this is crucial for the attack

− cache levels: slight complication to the attacks but differences of timing enable to recog-
nize the situation
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Attack

array rbx has size 256·4096 (256 pages)

mechanism:

− before we execute the code we make sure that the whole array rbx is evicted from the
cache

− by overwriting all lines of the cache by different read operations

− during the code execution only one address is fetched to the cache because of cache miss

− provided that instruction 7 is executed before the sequence is retired due to interrupt

− afterwards the attacker reads the whole array rbx page by page:

− all time the cache misses (long execution time) ...

− except for the page with the number stored in rcx
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