Distributed Computing PWr, WIT

Prof. Mirosław Kutyłowski

Warm up topic: colouring

General information

- Schedule: the first half of the semester , 7-8 lectures, each 2x45 minutes
- **Textbook:** Principles of Distributed Computing, Roger Wattenhofer, ETH Zurich
- **Recording:** the lecture will be recorded
- **Blackboard**: its image of the blackboard will be available as a pdf file (separate file for each topic)
- Exercises: with dr Gebala, grade based on result from exercises

Focus

• Main issue:

- creating distributed systems is completely different than designing traditional sequential programs
- you have to "restart" your brain as a computer engineer
- Our Focus: security related issues
- Topics:
 - new topics emerge, many more will come in the future,
 - ... but once you learn to deal with distributed systems you can handle new challenges

Model

Nodes:

- independent computing units
- the immediate neighbors known
- ... but no global view
- local communication cost of minor importance

A

Communication:

- substantial latency
- unpredictable delays
- asynchrony
- communication failures

Model

Dynamics:

- the nodes join and leave the network
- Node mobility: the neighbors may change

virtual street

Adversary:

- may corrupt some nodes
- location of subverted may change
- Denial-of-service or gaining control over the network

Maximal Independent set

Shared memory

Distributed memory

Vertex Coloring Problem

Assign colors to nodes so that:

- the neighbors must not the same color
- the overall number of colors used in as small as possible

Coloring problem -motivation

Assigning frequencies for broadcasting:

- an edge represents a possible interference
- overall number of frequencies used must be as low as possible

Greedy sequential approach

Algorithm 1.5 Greedy Sequential

- 1: while there is an uncolored vertex $v\ {\bf do}$
- 2: color v with the minimal color (number) that does not conflict with the already colored neighbors
- 3: end while

Greedy sequential approach

Number of colors:

If degree of the graph is d, then the highest color used is d+1

Reduce algorithm

Algorithm 1.9 Reduce

- 1: Assume that initially all nodes have IDs
- 2: Each node v executes the following code:
- 3: node v sends its ID to all neighbors
- 4: node v receives IDs of neighbors
- 5: while node v has an uncolored neighbor with higher ID $\operatorname{\mathbf{do}}$
- 6: node v sends "undecided" to all neighbors
- 7: node v receives new decisions from neighbors
- 8: end while
- 9: node v chooses the smallest admissible free color
- 10: node v informs all its neighbors about its choice

Reduce

.

Algorithm 1.9 Reduce

- 1: Assume that initially all nodes have IDs
- 2: Each node v executes the following code:
- 3: node v sends its ID to all neighbors
- 4: node v receives IDs of neighbors
- 5: while node v has an uncolored neighbor with higher ID do
- 6: node v sends "undecided" to all neighbors
- 7: node v receives new decisions from neighbors

8: end while

- 9: node v chooses the smallest admissible free color
- 10: node v informs all its neighbors about its choice

Reduce – time complexity

Number of colors is degree+1 (optimal)

Runtime is frequently ok, but not always. Think about an array:

Vertex coloring of trees

2 colors suffice: color=distance to the root mod 2

Finding the distance to the root: time=height of the tree BAD!

And it looks impossible to improve!

Slow algorithm

Algorithm 1.14 Slow Tree Coloring

- 1: Color the root 0, root sends 0 to its children
- 2: Each node v concurrently executes the following code:
- 3: if node v receives a message c_p (from parent) then
- 4: node v chooses color $c_v = 1 c_p$
- 5: node v sends c_v to its children (all neighbors except parent)
- 6: end if

Log* function

```
Definition 1.16 (Log-Star).

\forall x \leq 2: \log^* x := 1 \quad \forall x > 2: \log^* x := 1 + \log^*(\log x)
```

Practically constant function:

```
log*(2)=1
log*(4)=2
Log*(16)=3
Log*(65536)=4
Log*(2<sup>65536</sup>)=5 but 2<sup>65536</sup> is practically infinity
```

6-color algorithm in log* time

Algorithm 1.17 "6-Color"

- 1: Assume that initially the nodes have IDs of size $\log n$ bits
- 2: The root assigns itself the label 0
- 3: Each other node v executes the following code
- 4: send own color c_v to all children
- 5: repeat
- 6: receive color c_p from parent
- 7: interpret c_v and c_p as bit-strings
- 8: let *i* be the index of the smallest bit where c_v and c_p differ
- 9: the new label is *i* (as bitstring) followed by the i^{th} bit of c_v
- 10: send c_v to all children

11: **until** $c_w \in \{0, \ldots, 5\}$ for all nodes w

6-color algorithm

Reduction of the size of the color:

from length to log(length)+1

Algorithm 1.17 "6-Color"

- 1: Assume that initially the nodes have IDs of size $\log n$ bits
- 2: The root assigns itself the label 0
- 3: Each other node v executes the following code
- 4: send own color c_v to all children

5: repeat

- 6: receive color c_p from parent
- 7: interpret c_v and c_p as bit-strings
- 8: let *i* be the index of the smallest bit where c_v and c_p differ
- 9: the new label is i (as bitstring) followed by the i^{th} bit of c_v
- 10: send c_v to all children
- 11: until $c_w \in \{0, \ldots, 5\}$ for all nodes w

6-color algorithm

Correctness of colors:

Algorithm 1.17 "6-Color"

- 1: Assume that initially the nodes have IDs of size $\log n$ bits
- 2: The root assigns itself the label 0
- 3: Each other node v executes the following code
- 4: send own color c_v to all children

5: repeat

- 6: receive color c_p from parent
- 7: interpret c_v and c_p as bit-strings
- 8: let *i* be the index of the smallest bit where c_v and c_p differ
- 9: the new label is i (as bitstring) followed by the i^{th} bit of c_v
- 10: send c_v to all children
- 11: **until** $c_w \in \{0, \ldots, 5\}$ for all nodes w

6-color algorithm

No progress when 6 colors:

bits to denote the position: 00 01 10

The highest color: 101 = 5

Algorithm 1.17 "6-Color"

- 1: Assume that initially the nodes have IDs of size $\log n$ bits
- 2: The root assigns itself the label 0
- 3: Each other node v executes the following code
- 4: send own color c_v to all children

5: repeat

- 6: receive color c_p from parent
- 7: interpret c_v and c_p as bit-strings
- 8: let *i* be the index of the smallest bit where c_v and c_p differ
- 9: the new label is i (as bitstring) followed by the i^{th} bit of c_v
- 10: send c_v to all children
- 11: **until** $c_w \in \{0, \dots, 5\}$ for all nodes w

Improving – shift down

Sieblings will get the same color:

Algorithm 1.19 Shift Down

- 1: Each other node v concurrently executes the following code:
- 2: Recolor v with the color of parent

3: Root chooses a new (different) color from $\{0, 1, 2\}$

6-to-3 algorithm

Algorithm 1.21 Six-2-Three

- 1: Each node v concurrently executes the following code:
- 2: for x = 5, 4, 3 do
- 3: Perform subroutine Shift down (Algorithm 1.19)
- 4: if $c_v = x$ then
- 5: choose the smallest admissible new color $c_v \in \{0, 1, 2\}$
- 6: end if
- $7: \mathbf{end} \mathbf{for}$

6-to-3 algorithm

Algorithm 1.21 Six-2-Three

- 1: Each node v concurrently executes the following code:
- 2: for x = 5, 4, 3 do
- 3: Perform subroutine Shift down (Algorithm 1.19)
- 4: if $c_v = x$ then
- 5: choose the smallest admissible new color $c_v \in \{0, 1, 2\}$
- 6: end if
- 7: end for

••

••