Distributed Computing
PWr, WIT

Prof. Mirostaw Kutytowski

Warm up topic: colouring

General information

e Schedule: the first half of the semester, 7-8 lectures, each 2x45
minutes

* Textbook: Principles of Distributed Computing, Roger Wattenhofer,
ETH Zurich

* Recording: the lecture will be recorded

* Blackboard: its image of the blackboard will be available as a pdf file
(separate file for each topic)

* Exercises: with dr Gebala, grade based on result from exercises

Focus

* Main issue:

 creating distributed systems is completely different than designing traditional
sequential programs

* you have to “restart” your brain as a computer engineer

* Our Focus: security related issues

* Topics:
* new topics emerge, many more will come in the future,

* ... but once you learn to deal with distributed systems you can handle new
challenges

%/O
Model

Nodes:
* independent computing units
* the immediate neighbors known
* ... but no global view
* local communication cost of minor importance

Communication:
* substantial latency @
e unpredictable delays
* asynchrony
e communication failures

I\/I O d e | V/ \'—\.\4&\ C"\ Vu.‘\ \y._.\(,s

D
Dynamics: "V
* the nodes join and leave the network é"-‘jn ol

* Node mobility: the neighbors may change

Adversary:
* may corrupt some nodes
* |location of subverted may change
* Denial-of-service or gaining control over the network

e p—]

Some fundamental problems

Leader election

L EAVER
o O O O
Initialization ©
4 1 J 2 5_
O @, O O O

(ox¢,) [, %) @31 (w) (6% %]

Some fundamental problems

@ — O

Maximal Independent set

] N
<[>~

Some fundamental problems

Collecting data O
;l"‘"v/H/ O/
O \0
~~

D"\.
Gossiping \o

Some fundamental problems

Shared memory

Glolosl e viebl @

o O

Distributed memory

®, O -,

x L |
(]

Vertex Coloring Problem

Assign colors to nodes so that:
* the neighbors must not the same color

* the overall number of colors used in as small as possible

- O

Coloring problem -motivation

Assigning frequencies for broadcasting:
* an edge represents a possible interference
* overall number of frequencies used must be as low as possible

-O\O>5\ /-0

Greedy sequential approach

Algorithm 1.5 Greedy Sequential

1: while there is an uncolored vertex v do

2: color v with the minimal color (number) that does not conflict with the
already colored neighbors

3: end while

Greedy sequential approach

Number of colors:

If degree of the graph is d, then the highest color used is d+1
1O =

\/v

c\"f_ ‘oal
—

It cannot be |mproved

Reduce algorithm

Algorithm 1.9 Reduce

LA e

L X

|_I.
<

. Assume that initially all nodes have IDs

Each node v executes the following code:

node v sends its ID to all neighbors

node v receives IDs of neighbors

while node v has an uncolored neighbor with higher 1D do
node v sends “undecided” to all neighbors
node v receives new decisions from neighbors

end while

node v chooses the smallest admissible free color

node v informs all its neighbors about its choice

Algorithm 1.9 Reduce

Reduce

10:

e LA

Assume that initially all nodes have 1Ds

Each node v executes the following code:

node v sends its ID to all neighbors

node v receives IDs of neighbors

while node v has an uncolored neighbor with higher ID do
node v sends “undecided” to all neighbors
node v receives new decisions from neighbors

end while

node v chooses the smallest admissible free color

node v informs all its neighbors about its choice

Reduce — time complexity

Number of colors is degree+1 (optimal)
Runtime is frequently ok, but not always. Think about an array:

O A 2 2 L S ¢ 7
O O —— O—— O~ O (D— co— 0O

Vertex coloring of trees

2 colors suffice: color=distance to the root mod 2
Finding the distance to the root: time=height of the tree

BAD!

And it looks impossible to improve! o O

S
AL

Slow algorithm

Algorithm 1.14 Slow Tree Coloring

1: Color the root 0, root sends 0 to its children

2: Each node v concurrently executes the following code:
3: if node v receives a message ¢, (from parent) then

4 node v chooses color ¢, =1 —¢,

5

6

. mnode v sends ¢, to its children (all neighbors except parent)
: end if

N
Ay N

O

Log™ function

Definition 1.16 (Log-Star).
Vr<2:log"z:=1 Vzr>2: log(z)=1+log"(logx

Practically constant function:

r—Iog*(2)=1
log*(4)=2
Log*(16)=3
Log*(65536)=4

Log*(2°°°3%)=5 but 2%>>3¢ is practically infinity
L\

6-color algorithm i’ log* time

—~—

Algorithm 1.17 “6-Color”

: Assume that initially the nodes have IDs of size log n bits
The root assigns itself the label 0
Each other node v executes the following code
send own color ¢, to all children
repeat
receive color ¢, from parent
interpret ¢, and ¢, as bit-strings
let 7 be the index of the smallest bit where ¢, and ¢, differ

S L AN S i v

© ®

the new label is i (as bitstring) followed by the i bit of ¢,
send ¢, to all children
. until ¢, € {0,...,5} for all nodes w

— =
= o

Algorithm 1.17 “6-Color”

Assume that initially the nodes have IDs of size log n bits
The root assigns itself the label 0
Each other node v executes the following code
send own color ¢, to all children
repeat
receive color ¢, from parent
interpret ¢, and cp as bit-strings
let i be the index of the smallest bit where ¢, and ¢, differ

6-color algorithm

© T o W

Reduction of the size of the
color:

the new label is i (as bitstring) followed by the i*™® bit of ¢,
send ¢, to all children
. until ¢, € {0,...,5} for all nodes w

= =
= O

from length to log(length)+1

o [c; |
\L &~ J\(@A C
4 :Ej’ Cy T ‘:Jﬁ

% &\ o~y Wolov=

6-color algorithm

Correctness of colors:

O

O

Algorithm 1.17 “6-Color”

Assume that initially the nodes have IDs of size log n bits
The root assigns itself the label 0
Each other node v executes the following code
send own color ¢, to all children
repeat
receive color ¢, from parent
interpret ¢, and ¢, as bit-strings
let i be the index of the smallest bit where ¢, and ¢, differ

© T o W

the new label is i (as bitstring) followed by the i*™® bit of ¢,
send ¢, to all children
. until ¢, € {0,...,5} for all nodes w

= =
= O

2
<p - o
g] —> [=\ | TN
A o 20 [T
Cv + :‘F

e — [EJ]g 11O

Algorithm 1.17 “6-Color”

6-color algorithm
No progress when 6 colors: ;

Assume that initially the nodes have IDs of size log n bits
The root assigns itself the label 0
Each other node v executes the following code
send own color ¢, to all children
repeat
receive color ¢, from parent
interpret ¢, and ¢, as bit-strings
let i be the index of the smallest bit where ¢, and ¢, differ
the new label is i (as bitstring) followed by the i bit of ¢,
send ¢, to all children
until ¢, € {0,..., 5} for all nodes w

bits to denote the position:
00
01
10

The highest color: 101 =5

O ——20

—_> @

Improving — shift down

Sieblings will get the same color:

Algorithm 1.19 Shift Down

1: Each other node v concurrently executes the following code:
2: Recolor v with the color of parent

3: Root chooses a new (different) color fmnm

6-to-3 algorithm

Algorithm 1.21 Six-2-Three

1: Each node v concurrently executes the following code:
2: for x =5.4,3 do

3: Perform subroutine Shift down (Algorithm 1.19)

4 if ¢, = x then

5 choose the smallest admissible new color ¢, € {0,1,2}
6: end if

7: end for

Algorithm 1.21 Six-2-Three

1: Each node v concurrently executes the following code:

6 3 | : h 2: for r = 5,4,3 do
_to - a go r It I I l 3: Perform subroutine Shift down (Algorithm 1.19)

4 if ¢, = x then

5 choose the smallest admissible new color ¢, € {0,1,2}
6: end if

7: end for

