Distributed Computing PWr, WIT 2021

Prof. Mirosław Kutyłowski

3: Communication complexity

All pairs shortest path problem (APSP)

- For every pair of nodes (u,v) compute the shortest path from u to v
- Store the results so that routing along these paths is possible

Find diameter of the graph - naïve solution

Algorithm 11.1 Naive Diameter Construction

- 1: all nodes compute their radius by synchronous flooding/echo
- 2. all nodes flood their radius on the constructed BFS tree
- 3: the maximum radius a node sees is the diameter

Naïve solution complexity

time O(D) for diameter D Congestion of messages f n algorithms executed in parallel

Reasonable size of messages

something like O(log n)

Building block -- BFS

Broad First Search

Definition 11.2. (BFS_v) Performing a breadth first search at node v produces spanning tree BFS_v (see Chapter 2). This takes time $\mathcal{O}(D)$ using small messages.

Pebbles algorithm

Algorithm 11.3 Computes APSP on G .

- 1: Assume we have a leader node \iint if not, compute one first)
- 2: compute BFS_l of leader l
- 3: send a pebble $\mathcal{P}_{\mathcal{A}}$ traverse BFS_l in a DFS way;
- 4: while P traverses BFS_l do
- if P visits a new node v then 5:
	- wait one time slot; $//$ avoid congestion
		- start (BFS_v) from node v; // compute all distances to v
- // the depth of node u in BFS_v is $d(u, v)$ 8:
- end if $9:$

10: end while

Algorithm 11.3 Computes APSP on G .

- 1: Assume we have a leader node l (if not, compute one first)
- 2: compute BFS_l of leader l
- 3: send a pebble P to traverse BFS_l in a DFS way;
- 4: while P traverses BFS_l do
- if P visits a new node v then $5:$
- wait one time slot; $//$ avoid congestion 6:
- start BFS_v from node v; // compute all distances to v $7:$
- // the depth of node u in BFS_v is $d(u, v)$ 8:
- end if $9:$

10: end while

Algorithm 11.3 Computes APSP on G .

- 1: Assume we have a leader node l (if not, compute one first)
- 2: compute BFS_l of leader l
- 3: send a pebble P to traverse BFS_l in a DFS way;
- 4: while P traverses BFS_l do
- if P visits a new node v then $5:$
- wait one time slot; $//$ avoid congestion $6:$
- start BFS_v from node v; // compute all distances to v $7:$
- // the depth of node u in BFS_v is $d(u, v)$ 8:
- end if $9:$
- 10: end while

Algorithm 11.3 Computes APSP on G .

- 1: Assume we have a leader node l (if not, compute one first)
- 2: compute BFS_l of leader l
- 3: send a pebble P to traverse BFS_l in a DFS way;
- 4: while P traverses BFS_l do
- if P visits a new node v then $5:$
- wait one time slot; $//$ avoid congestion $6:$
- start BFS_v from node v; // compute all distances to v $7:$
- // the depth of node u in BFS_v is $d(u, v)$ 8:
- end if $9:$
- 10: end while

Time complexity

Theorem 11.5. Algorithm 11.3 computes APSP (all pairs shortest path) in time $\mathcal{O}(n)$.

Lower bound

Argument showing that complexity of any algorithm is at least b, where **b** is the bound

Known for sequential programs (e.g. the number for steps for sorting)

Considerably more complex to prove for distributed algorithms

Graph used for showing a n/log n lower bound

$$
\begin{array}{llll}\n\mathbf{L_0} & := & \{l_i \mid i \in [q] \} \\
\mathbf{L_1} & := & \{l'_i \mid i \in [q] \} \\
\mathbf{R_0} & := & \{r_i \mid i \in [q] \} \\
\mathbf{R_1} & := & \{r'_i \mid i \in [q] \} \\
\mathbf{R_2} & := & \{r'_i \mid i \in [q] \} \\
\end{array} \tag{7} \begin{array}{llll}\n\text{lower left} \\
\text{upper right} \\
\text{lower right}\n\end{array}
$$

Some number of edges between L_0 and L_1 , some number of edges between R_0 and R_1

Diameter 2 or 3

 Δ

 $\mathcal{L}^{\text{max}}_{\text{max}}$ and $\mathcal{L}^{\text{max}}_{\text{max}}$

Informal argument

One has to check that for each (i,j) there is a connection either on the left or on the right side

2-party communication model

- Alice gets x, Bob gets y
- The goal is to compute $f(x,y) = \alpha$
- Alice and Bob exchange messages, finally both Alice and Bob must learn $f(x,y)$

Communication complexity

The simplest solution:

1. Alice sends x to Bob 2. Bob computes f(x,y) 3. Bob sends $f(x,y)$ to Alice

Communication complexity

 $length(x) + length(f(x,y))$

Equality, its complexity?

(Equality.) We define the equality function EQ to be:

$$
EQ(x,y) := \begin{cases} \frac{1}{x} & x = y \\ 0 & x \neq y \end{cases}.
$$

Formal definition of communication complexity

The total size of all messages exchanged …

… in the worst case.

"rectangles"

A set S of pairs is a rectangle iff

If (x_0, y_0) and (x_1, y_1) belong to S, then (x_0, y_1) and (x_1, y_0) belong to S as well

Rectangles

Importance of rectangles

For a given set of messages exchanged, the set of possible inputs (x,y) is a rectangle

"monochromatic" rectangle

A rectangle where the value $f(x,y)$ is fixed

One cannot stop the computation unless a rectangle is monochromatic

Monochromatic rectangles

Fooling set

(x_1,y_1) , (x_2,y_2) , ..., (x_n,y_n) is a fooling set iff

- $f(x_1, y_1) = f(x_2, y_2) = ... = f(x_n, y_n) = x$
- for any $i\neq j$ we have $f(x_i, y_j) \neq x$

Fooling set for Equality

Fooling set lemma

If S is a fooling set for f, then $CC(f) = \Omega(\log |S|)$.

 CC of EQ is $k-bit$ numbers $SL(109(2^k)) = L(k)$

 $T_{\text{SL}(k)}$

Auxiliary fact

Lemma 11.21. Let x, y be k-bit strings. Then $x \neq y$ if and only if there is an index $i \in [2k]$ such that the ith bit of $x \circ \overline{x}$ and the ith bit of $\overline{y} \circ y$ are both 0.

Mapping to graph

Definition 11.22. Using the parameter q defined before, we define a bijective map between all pairs x, y of q^2 -bit strings and the graphs in \mathcal{G} : each pair of strings x, y is mapped to graph $G_{x,y} \in \mathcal{G}$ that is derived from skeleton G' by $adding$

- edge (l_i, l'_i) to **Part L** if and only if the $(j + q \cdot (i 1))$ th bit of x is 1.
- edge (r_i, r'_j) to Part R if and only if the $(j + q \cdot (i 1))$ th bit of y is 1.

Mapping to graph

Lemma 11.23. Let x and y be $\frac{q^2}{2}$ -bit strings given to Alice and Bob.¹ Then graph $G := G_{x \circ \overline{x}, \overline{y} \circ y} \in \mathcal{G}$ has diameter 2 if and only if $x = y$.

Lower bound

It follows that computing APSP for a graph requires exchanging $\Omega(n)$ bits between the left and the right part, i.e. $\Omega(n/log(n))$ messages of size $log(n)$

Randomized complexity of equality

Algorithm 11.25 Randomized evaluation of EQ .

- 1: Alice and Bob use public randomness. That is they both have access to the same random bit string $z \in \{0,1\}^k$
- 2: Alice sends bit $a := \sum_{i \in [k]} x_i \cdot z_i \mod 2$ to Bob
- 3: Bob sends bit $b := \sum_{i \in [k]} y_i \cdot z_i \mod 2$ to Alice
- 4: if $a \neq b$ then

5: **we know**
$$
x \neq y
$$

 $6:$ end if

