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All pairs shortest path problem (APSP)

* For every pair of nodes (u,v) compute the shortest path from utov
 Store the results so that routing along these paths is possible




Find diameter of the graph - naive solution

Algorithm 11.1 Naive Diameter Construction

1: all nodes compute their radius by synchronous flooding/echo
2: all nodes flood their radius on the constructed BFS tree
3: the maximum radius a node sees is the diameter




Naive solution complexity

time O(D) for diameter D
Congestion of messages lgorithms executed in parallel
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Reasonable size of messages

O(log ﬂ

something like




Building block -- BFS ~ Broed Fivet Seaw4

Definition 11.2. (BFS, ) Performing a breadth first search at node v produces
spanning tree BFS, (see Chapter 2). This takes time O(D) using small mes-
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Pebbles algorithm \Gé

Algorithm 11.3 Computes APSP on G.

Assume we have a leader node (! [if not, compute one first)
compute BFS; of leader [

send a pebhle@tﬂ traverse BE'S; in a DFS way;

while P traverses BFS; do

5. if W_; then

L wait one time slot; // avoid congestion
7 start‘ EE g;; from node v; // compute all distances to v
8: // the~depth of node u in BFS, is d(u.v)

9: end if
10: end while




Algorithm 11.3 Computes APSP on G.

1: Assume we have a leader node [ (if not, compute one first)
2: compute BF'S; of leader [

3: send a pebble P to traverse BFS; in a DFS way:

4: while P traverses BF'S; do

if P visits a new node v then

N

6: wait one time slot; // avoid congestion

7 start BF'S, from node v; // compute all distances to v
8: // the depth of node u in BFS,, is d(u,v)

9:  end if

end while
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Algorithm 11.3 Computes APSP on G.

1: Assume we have a leader node [ (if not, compute one first)

2: compute BFS; of leader [

3: send a pebble P to traverse BFS; in a DFS way:;

4: while P traverses BFS; do

5. if P visits a new node v then

6: wait one time slot; // avoid congestion

7: start BFS, from node v; // compute all distances to v
8: // the depth of node u in BFS,, is d(u, v)

9:  end if

end while
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Algorithm 11.3 Computes APSP on G.

1: Assume we have a leader node [ (if not, compute one first)

2: compute BFS; of leader [

3: send a pebble P to traverse BFS; in a DFS way:;

4: while P traverses BFS; do

5. if P visits a new node v then

6: wait one time slot; // avoid congestion

7: start BFS, from node v; // compute all distances to v
8: // the depth of node u in BFS,, is d(u, v)

9:  end if

end while
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Avoiding congestions \é

Ve

Gmma: no node is simultaneously involved in BFS , and BFSV>

Proof:

* Let: BFS started at@at tim@ BFS started at v at time t,

* A node w involved at time t +d(u,w), so@>= t, +|c‘1|(_u,\v@

——

* t,+ d(v,wl >= (t,+d(u,v)+1) + d(v,w) >=t +d(u,w) @u + d(u,w)
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Time complexity

Theorem 11.5. Algorithm 11.3 computes APSP (all pairs shortest path) in
time O(n).



Lower bound

Argument showing that complexity of any algorithm is at least
b, where b is the bound

Known for sequential programs (e.g. the number for steps for
sorting)

Considerably more complex to prove for distributed algorithms



Graph used for showing a n/log n lower bound

Lo = {li|li€lq
L, = {L]iclg
Ro == {nlicl
R, = {rllielg

|} // upper left in Figure 11.6
|} // lower left

} // upper right

} // lower right




Some number of edges between L, and L,
some number of edges between R, and R,
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Diameter 2 or 3
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Informal argument

One has to check that for each (i,j) there is a connection either
on the left or on the right side



2-party communication model

* Alice gets x, Bob gets y
* The goal is to compute f(x,y) =

* Alice and Bob exchange messages, finally both Alice and Bob
must learn f(x,y)



Communication complexity

The simplest solution:

1. Alice sends x to Bob
2. Bob computes f(x,y)
3. Bob sends f(x,v) to Alice

Communication complexity
length(x) + length(f(x,y))
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Equality, its complexity?
(Equality.) We define the equality function EQ to be:

EQ(z,y) := { 1 =y

0 x#vy.
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Formal definition of communication
complexity

The total size of all messages exchanged ...

... in the worst case.



Matrix representation of function f
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“rectangles”

A set S of pairs is a rectangle iff

If (Xo,Y,) and (x,,y,) belong to S, then
(Xo,Y1) and (x,,y,) belong to S as well
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Rectangles
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Importance of rectangles

For a given set of messages exchanged, the set of possible
inputs (x,y) is a rectangle



“monochromatic” rectangle

A rectangle where the value f(x,y) is fixed

One cannot stop the computation unless a rectangle is
monochromatic




Monochromatic rectangles
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Fooling set

(X,¥1), (X5,¥5), -, (X,,y,) is a fooling set iff
f(X1,y1)=f()(2;\’I2)= e = f(Xn,yn)=X

* forany i#j we have f(x,y;) # x



Fooling set for Equality
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Fooling set lemma

If S is a fooling set for f, then C'C'(f) = Q(log|S]).
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Auxiliary fact

Lemma 11.21. Let x.y be k-bit strings. Then x #+ y if and only if there is an
index i € [2k| such that the it" bit of x o T and the i*" bit of 7oy are both 0.
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Mapping to graph

Definition 11.22. Using the parameter q defined before, we define a bijective
map between all pairs x.vy of ¢>-bit strings and the graphs in G: each pair of
strings x,y is mapped to graph G., € G that is derived from skeleton G' by
adding

e edge (1;,1}) to Part L if and only if the (j +q- (i — 1)) bit of x is 1.

o edge (ri.r;) to Part R if and only if the (j 4 q - (i — 1)) bit of y is 1.



Mapping to graph

Lemma 11.23. Let x and y be %—bit strings given to Alice and Bob.'! Then
graph G := G oz 50y € G has diameter 2 if and only if © = y.



Lower bound

It follows that computing APSP for a graph
requires exchanging Q(n) bits between the left and the right part,
i.e. Q(n/log(n)) messages of size log(n)



Randomized complexity of equality

Algorithm 11.25 Randomized evaluation of E(Q).

1: Alice and Bob use public randomness. That is they both have access to the
same random bit string > € {0.1}*

2: Alice sends bit(a = nod 2 to Bob
3: Bob sends bit b := Z-EE[I.:] y; - z; mod 2 to Alice
4: if a # b then

5: | we know x £ i

6: end 1t
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