Distributed Computing PWr, WIT 2021

Prof. Mirosław Kutyłowski

3: Communication complexity

All pairs shortest path problem (APSP)

- For every pair of nodes (u,v) compute the shortest path from u to v
- Store the results so that routing along these paths is possible

Find diameter of the graph - naïve solution

Algorithm 11.1 Naive Diameter Construction

- 1: all nodes compute their radius by synchronous flooding/echo
- 2: all nodes flood their radius on the constructed BFS tree
- 3: the maximum radius a node sees is the diameter

Naïve solution complexity

time O(D) for diameter D Congestion of messages -n algorithms executed in parallel

Reasonable size of messages

something like O(log n)

Building block -- BFS

Broad First Search

Definition 11.2. (BFS_v) Performing a breadth first search at node v produces spanning tree BFS_v (see Chapter 2). This takes time $\mathcal{O}(D)$ using small messages.

Pebbles algorithm

Algorithm 11.3 Computes APSP on G.

- 1: Assume we have a leader node l (if not, compute one first)
- 2: compute BFS_l of leader l
- 3: send a pebble P to traverse BFS_l in a DFS way;
- 4: while P traverses BFS_l do
- 5: **if** P visits a new node v **then**
 - wait one time slot; // avoid congestion
 - start BFS_v from node v; // compute all distances to v
- 8: // the depth of node u in BFS_v is d(u, v)
- 9: end if

10: end while

Algorithm 11.3 Computes APSP on G.

- 1: Assume we have a leader node l (if not, compute one first)
- 2: compute BFS_l of leader l
- 3: send a pebble P to traverse BFS_l in a DFS way;
- 4: while P traverses BFS_l do
- 5: **if** P visits a new node v **then**
- 6: wait one time slot; // avoid congestion
- 7: start BFS_v from node v; // compute all distances to v
- 8: // the depth of node u in BFS_v is d(u, v)
- 9: end if

10: end while

Algorithm 11.3 Computes APSP on G.

- 1: Assume we have a leader node l (if not, compute one first)
- 2: compute BFS_l of leader l
- 3: send a pebble P to traverse BFS_l in a DFS way;
- 4: while P traverses BFS_l do
- 5: **if** P visits a new node v **then**
- 6: wait one time slot; // avoid congestion
- 7: start BFS_v from node v; // compute all distances to v
- 8: // the depth of node u in BFS_v is d(u, v)
- 9: end if
- 10: end while

Algorithm 11.3 Computes APSP on G.

- 1: Assume we have a leader node l (if not, compute one first)
- 2: compute BFS_l of leader l
- 3: send a pebble P to traverse BFS_l in a DFS way;
- 4: while P traverses BFS_l do
- 5: **if** P visits a new node v **then**
- 6: wait one time slot; // avoid congestion
- 7: start BFS_v from node v; // compute all distances to v
- 8: // the depth of node u in BFS_v is d(u, v)
- 9: end if
- 10: end while

Time complexity

Theorem 11.5. Algorithm 11.3 computes APSP (all pairs shortest path) in time $\mathcal{O}(n)$.

Lower bound

Argument showing that complexity of any algorithm is at least **b**, where **b** is the bound

Known for sequential programs (e.g. the number for steps for sorting)

Considerably more complex to prove for distributed algorithms

Graph used for showing a n/log n lower bound

$$\mathbf{L}_{0} := \{l_{i} \mid i \in [q]\} // \text{ upper left in Figure 11.6} \\
\mathbf{L}_{1} := \{l'_{i} \mid i \in [q]\} // \text{ lower left} \\
\mathbf{R}_{0} := \{r_{i} \mid i \in [q]\} // \text{ upper right} \\
\mathbf{R}_{1} := \{r'_{i} \mid i \in [q]\} // \text{ lower right}$$

Some number of edges between L_0 and L_1 , some number of edges between R_0 and R_1

Diameter 2 or 3

Υ.

Informal argument

One has to check that for each (i,j) there is a connection either on the left or on the right side

2-party communication model

- Alice gets x, Bob gets y
- The goal is to compute f(x,y) = x
- Alice and Bob exchange messages, finally both Alice and Bob must learn f(x,y)

Communication complexity

The simplest solution:

Alice sends x to Bob
 Bob computes f(x,y)
 Bob sends f(x,y) to Alice

Communication complexity

length(x) + length(f(x,y))

Equality, its complexity?

(Equality.) We define the equality function EQ to be:

$$\mathrm{EQ}(x,y) := \left\{ \begin{array}{cc} \underline{1} & : x = y \\ 0 & : x \neq y \end{array} \right.$$

Formal definition of communication complexity

The total size of all messages exchanged ...

... in the worst case.

"rectangles"

A set S of pairs is a rectangle iff

If (x_0, y_0) and (x_1, y_1) belong to S, then (x_0, y_1) and (x_1, y_0) belong to S as well

Rectangles

Importance of rectangles

For a given set of messages exchanged, the set of possible inputs (x,y) is a rectangle

"monochromatic" rectangle

A rectangle where the value f(x,y) is fixed

One cannot stop the computation unless a rectangle is monochromatic

Monochromatic rectangles

/ EQ	000	001	010	011	100	101	110	111	$\leftarrow x$
000	1	0	0	0	0	0	0	0	
001	0	1	0	0	0	0	0	0	
010	0	0	1	0	0	0	0	0	
011	0	0	0	1	0	0	0	0	
100	0	0	0	0	1	0	0	0	
101	0	0	0	0	0	1	0	0	
110	0	0	0	0	0	0	1	0	
111	0	0	0	0	0	0	0	1	
$\uparrow y$)

Fooling set

$(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ is a fooling set iff

- $f(x_1, y_1) = f(x_2, y_2) = ... = f(x_n, y_n) = x$
- for any i \neq j we have $f(x_i, y_j) \neq x$

Fooling set for Equality

0

Fooling set lemma

If S is a fooling set for f, then $CC(f) = \Omega(\log |S|)$.

CC of EQ is $SL(log(2^k)) = SL(k)$

z z k

TSI(4)

Auxiliary fact

Lemma 11.21. Let x, y be k-bit strings. Then $x \neq y$ if and only if there is an index $i \in [2k]$ such that the i^{th} bit of $x \circ \overline{x}$ and the i^{th} bit of $\overline{y} \circ y$ are both 0.

Mapping to graph

Definition 11.22. Using the parameter q defined before, we define a bijective map between all pairs x, y of q^2 -bit strings and the graphs in \mathcal{G} : each pair of strings x, y is mapped to graph $G_{x,y} \in \mathcal{G}$ that is derived from skeleton G' by adding

- edge (l_i, l'_j) to **Part L** if and only if the $(j + q \cdot (i 1))^{th}$ bit of x is 1.
- edge (r_i, r'_j) to Part R if and only if the $(j + q \cdot (i 1))^{th}$ bit of y is 1.

Mapping to graph

Lemma 11.23. Let x and y be $\frac{q^2}{2}$ -bit strings given to Alice and Bob.¹ Then graph $G := G_{x \circ \overline{x}, \overline{y} \circ y} \in \mathcal{G}$ has diameter 2 if and only if x = y.

Lower bound

It follows that computing APSP for a graph requires exchanging $\Omega(n)$ bits between the left and the right part, i.e. $\Omega(n/\log(n))$ messages of size log(n)

Randomized complexity of equality

Algorithm 11.25 Randomized evaluation of EQ.

- 1: Alice and Bob use public randomness. That is they both have access to the same random bit string $z \in \{0, 1\}^k$
- 2: Alice sends bit $a := \sum_{i \in [k]} x_i \cdot z_i \mod 2$ to Bob
- 3: Bob sends bit $b := \sum_{i \in [k]} y_i \cdot z_i \mod 2$ to Alice
- 4: if $a \neq b$ then

5: we know
$$x \neq y$$

6: end if

