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Consensus problem:

* number of nodes is n, at most\fgf them faulty

 each node gets an iﬂput value} Q'{D, 4 }

e finally, the correct nodes decide upon a common value

 the common value must be one of the input values
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Impossibility of deterministic consensus in asynchronous
model with failures

* arbitrary delays but not longer than 1 time unit

* each node executes a deterministic algorithm

e for simplicity — binary inputs only



/) States of all nodes

@) Messages in transit

(_univalent configuratic@iecision value can be only one no
matter what happens later

b-configuration: univalent, decision will b
—

bivalent: decision will be QO or 1
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Lemma
Let f>1.

There is at least one bivalent initial configuration
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e.g. consider inputs (n=8):
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Configuration transition

* One message delivered, state changed, new messages despatched
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Configuration directed graph
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Two transitions
_

* inastate S two transitions are possible 7,=(u,,m,) and z,=(u,,m,),
* where u, #u,

then

configurations S(z,, 7,) anre the same
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Critical configuration

A bivalent configuration such that each child configuration is univalent
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Lemma 16.12. If a system is in a bivalent configuration, it must reach a critical
configuration within finite time, or it does not always solve consensus.



Lemma 16.13. If a configuration tree contains a critical configuration, crashing
a single node can create a bivalent leaf; i.e., a crash prevents the algorithm from
reaching agreement.

Let C be a critical configuration
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Let 7,=(u;,m,) and 7,=[u, m,) be transitions such that
* C(t,)is 1-valent
* C(t,) is O-valent

Ifen Clzy 75) 50 it is 1-valent and O-valent at the same time
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Consequently: u,=u,
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Corollary \/ &V”é’\'\

All transitions from a critical configuration C must involve the same node
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FINAL OBSERVATION

crush this node at configuration C
No consensus can be reached



Theorem 16.14. There 1s no_ deterministic_algorithm which always achieves

consensus in the asynchronous model, with f > 0. o
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Randomized consensus

Deterministic solution is impossible, but ...

... what about a randomized algorithm with random execution time
(and always correct output)? (Las Vegas algorithm)
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Algorithm 16.15 Randomized Consensus (Ben-Or)

1: v; €{0,1} 4 input bit
2: round = 1
3. decided = false

4: Broadcast myValue(v;, round)

g ey
5. while true do V‘«ﬁv‘k\u@ (O ) i>



Propose

» 6:  Wait until a majority of myValue messages of current round arrived
7. if all messages contain the same value v then
8: Bmadcastlpropose(ﬂ round )
9: else
10: Broadcast propose(_L, round)
11: end if

12:  if decided then

13: | Broadcast myValue(v;, round+1)

14: Hemde for v;)and terminate
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15: end if
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Adapt veas)
16:  Waituntila majority of propose messages of current round arrived

17:  if all messages propose the same value v then

18: Vi =

19: decide = true

20: |else if there is at least one proposal for v then OI
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22:  else (= Lo v d-\‘&b
23: Cl’lﬁﬂﬁ%@ randomly, with P-r@i =0] = Prjv; =1| = b(

21:  end if & r -

25: round = round + 1 /\/

/
26:  Broadcast myValue(v;, round)
27: end while
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All O input

* It finishes quite quickly!



Lemma 16.16. As long as no node sets decided to true, Algorithm 16.15 always
makes progress, independent of which nodes crash.



What happens if
all input bits are
the same?

=1
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11:

12:
13:
14:
15:

16:
17:
18:
19:
20):
21:
22:
23:
24:
25:
26:

Wait until a majority of myValue messages of current round arrived
if all messages contain the same value v then
Broadecast propose(v, round)
else
Broadcast propose(_L, round)
end if

if decided then
Broadcast myValue(v;, round+1)

Decide for v; and terminate
end if

Adapt

Wait until a majority of propose messages of current round arrived
if all messages propose the same value v then
V=
decide = true
else if there i1s at least one proposal for v then
;=
else
Choose v; randomly, with Pr[v; = 0] = Pr{v; = 1] =1/2
end if
round = round + 1
Broadcast myValue(v;, round)

27: end while



Essential case —both 0 and 1 as input

* any consensus value is ok
* no proposals for di\fferent pits in the same round
E—Tth%iir_siﬂ)de that decides, s@or Vv, at mu_ad\r7
#) no decide at this round to a different v’
"\ termWHl




Termination

- u—the first node that decides, say: for v, at round r

* no decide at this round to a different v’
* U terminates at the round r+1

 An other node@?)

* |f decides, then only for the same v
* otherwise, it has heard at least one propose(v,r) and sets v to v

 So all nodes broadcast v at the end of round r



Runtime

qguite bad, since the choices in line 23 must be almost the same
exponential time

It would help to have a public coin and to toss it together!

(it seems to be a hopeless task in a distributed system)
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Shared coin
4/8

Random variable that is equal to O with probability >1/4 and4 1
with probability >1/4_

(the value of the shared coin is the same for all nodes)



Algorithm 16.22 Shared Coin (code for node u)

1:
' 2:
3:
4:

[ b:
T:
8:

10:

Choose local coin ¢y, = 0 with probability 1/n, else ¢, =1
Broadcast myCoin(c,)

Wait fortﬁ— I coinss and store them in the local coin set-@

Broad t-l Set(C,
roadcast mySet(C',)

5. Wait for n — f coin sets

- (-\—/.__. - . s
if at least one coin is 0 among all coins in the coin sets then

else
N

end if

We show the correctness of the algorithm fo & To simplify

the proof we assume that n = 3f + 1, i.e., we assume the worst case.
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Lemma 16.23. Let u be a node, and let W be the set of coins that u received
in at least f + 1 different coin sets. It holds that |W| = f + 1.

C' be the multiset of coins received by u.

IC| = (n—f)2 _ Assuming that the lemmais
' false

Cl<f-(n=f)+(n—f)-f=2f(n-f)

n—f>2f

Cl<2f(n-1)< (n-f)?=|C



Lemma 16.24. All coins in W are seen by all correct nodes.



Theorem 16.25. If f < n/3 nodes crash, Algorithm 16.22 implements a shared
coin.

With probability (1 — 1/n)" = 1/e = 0.37 all nodes chose their local

coin equal to 1 (Line 1),_ and in that case 1 will be decided.



With probability 1 — (1 — 1/n)!"'| there is at least one 0 in W
W| > f+1~n/3,

1—(1—1/n)" =~ 1— (1/e)/* ~ 0.28



