Distributed Computing
Xidian 2021

Prof. Mirostaw Kutytowski

3: Byzantine agreement

Consensus with adversarial nodes

A Byzantine node can behave in an arbitrary way, not following the
protocol.

Consensus value — must be the value proposed by ONE of correct
nodes.

One Byzentine node only

Algorithm 17.9 Byzantine Agreement with f = 1.

1: Code for node u, with input value z: @

Round 1 zawh

e By “e /ZA,O)
2: Send tuple(u,x) to all other nodes)
3: Receive tuple(v,y) from all other nodes v N
4: Store all received tuple(v,y) in a set S, \) \/
-
Round 2 (\A
14 > ®
I 5. Send set S, to all other nodes

Receive sets S, from all nodes v , \V4 1
®T set of tuple(v,y) seen in at least two setinc:ludinﬂ" own@
8: Let tuple(v,y) € T be the tuple with the smallést value y

.

9: Decide on value Y

Property for n>4

All nodes hold the same T:

* If there are 3 correct nodes, then 2 correct values appearin 2 sets S,

* The values sent by the Byzantine node are not in T if it sends different
values.

Corollary: one value will be chosen

For n=3 one cannot reach agreement

Property. A correct node u must decide on its value if node w supports
it (while v disagrees — v might be byzantine)

Honest: u (with input 0) and v (with input 1) /
Byzantine: w says O to u

wsays l1tow @
u decides on 0, v decideson 1

Fundamental theorem

Theorem 17.13. A network with n nodes cannot reach byzantine agreement
with f > n/3 byzantine nodes.

P~

Proof.

Assume there is such agreement protocol A for n nodes.
-———/\ -

Emulate it by 3 nodes — each emulating n/3 nodes

King’s algorithm

S

Algorithm 17.14 King Algorithm (fo{f <n/3))

1:

r = my input value N~—

2: for phase =1to f+ 1 do

10:
11:
12:
13:
14:

© e N g ;o

Round 1

Broadcast value(x)

Round 2 ———

if some value(y) at least @mes then
Broadcast propose(y)

end if

if some propose(z) received more tha imes then

.:B:.Z
end if

Round 3

Let node v; be the predefined king of this phase i

The king v; broadcasts itg{ current value w

if received strictly less thaltTr= | propose(z) then
r=w

end if

15: end for

K'\v\%'l
*4?4«3 2

et xk—f* i)

Same value input The king’s value

will never be

accepted.
Algorithm 17.14 King Algorithm (for f < n/3)
1: = = my input value ~— NOdes Stlck to
2: for phase =1to f+1 do L.
o their input values
3: Broadcast value
— L 7< = O _@)\r J-\\
Round 2
4: if some value(y) at least n — f times then Vo-lU\Q (0\ %,] ‘,‘ r
0 5: Broadcast ’propose(gi) P L"Q’S-(' (AQCb X
6: end if .
7. if some propose(z) received more than f times then V*# >
8- r = 0 .&
9: end if
Round 3
n >
10: Let node v; be the predefined king of this phase i < 2

&
-> 13:

14:

The king v; broadcasts its current value w
if received strictly less than n — f propose(z) then
~~

end 1

15: end for

Proposing values

Lemma 17.16. If a correct node proposes x, no other correct node proposes v,
with y # x, if n > 3f.
et

Proof
A correct node must receive n-f messages, so at Ieast@rom
correct nodes

Two different proposal require the following number of nodes:

2(n-2f) torrect nodes, together 2n-3f>n nodes !? 2
~ —— N

\[/ o =& AT
O O

Kings

At least one king correct

Lemma: after the round with the correct king the nodes do not change
their values anymore.

Proof

Easy case: all correct nodes take the king’s value
Crucial case: line 12 executed by only SOME correct nodes

is the King’s value the same as for other correct nodes??

Crucial case

* thereby we assume that some node received a proposal at least n-f
times

e ... so from at least n-2f correct nodes
S~——
* as n-2f>f every node received a proposal from more than f nodes

e ... and therefore every correct node will change the value according to
the proposal

Lower bound — no algorithm with f rounds
determining minimum

* u, sends to u, at round 1 and then crashes
° U, sends to u, at round 2 and then crashes

* U;, sends to u; at round f and then crashes

* Only u; will see the minimum value

Byzantine agreement, asynchronous model

Algorithm 17.21 Asynchronous Byzantine Agreement (Ben-Or, for f < n/Q)‘
1: z; € {0,1} < input bit L —
2r=1 4 round
3: decided = false
4: Broadcast propose(z;,r)

5. repeat

6: Wait until n — f propose messages of current round r arrived

7. if at least n — 2f propose messages contain the same value x then

8: r; = x, decided = true

9: else if at least n — 4f propose messages contain the same value x then
10: ri ==

11: else

12: choose z; randomly, with Pr[z; = 0] = Pr[z; = 1] =1/2

13: end if

14 r=r+1

15: Broadcast propose(x;,r)
16: until decided (see Line 8)
17: decision = x;

