Distributed Computing
Informatyka Algorytmiczna 2021

Prof. Mirostaw Kutytowski

Clients & servers, PAXOS

Client-server model
* Message passing
e Server executes commands of the client

e Single client for a server: commands with sequence numbers solve

the problem
o 0
Z2NN
o o D

& 0 L&)
> > >

O &

Multiple clients, multiple servers

Inconsistency problem: the same order executed on different servers
may lead to different results

Client A: x:= x+1
Client B: x:=2*x

Server 1: initially x=0, orders: A (x=1), then B (x=2)
Server 2: initially x=0, orders: B (x=0), then A (x=1)

(Serializer

A straightforward but not scalable:

Algorithm 15.9 State Replication with a Serializer

1: Clients send commands one at a time to the serializer
2: Serializer forwards commands one at a time to all other servers
3: Once the serializer received all acknowledgments, it notifies the client about

f\?\\) SQV/B
P) 2 D
/j\‘/ \)D

2 Lock protocol

Algorithm 15.10 Two-Phase Protocol

Phase 1

'_]_: C]]_ent :'_'iQ-l.{,E‘. ,'.'|H SOTATOTa 'Fr\'r- +tha lanl-

Phase 2

if client receives lock from every server then

Client sends command reliakly o ooch server, and gives wie 10ck pack
else

Clients gives vne received locks back

Client waits, and then starts with Phase 1 again
end if

e LA

Algorithm 15.10 Two-Phase Protocol

Phase 1

2 I_O C k p o t OCO | 1: Client asks all servers for the lock

Phase 2

if client receives lock from every server then

Client sends command reliably to each server, and gives the lock back
else

Clients gives the received locks back

Client waits, and then starts with Phase 1 again
end if

Algorithm 15.10 Two-Phase Protocol

Phase 1

2 LO C k p rOtO CO | 1: Client asks all servers for the lock
Phase 2

if client receives lock from every server then

Client sends command reliably to each server, and gives the lock back
else

Clients gives the received locks back

Client waits, and then starts with Phase 1 again
end if

N 4

What happens if some servers/clients do not respond?
Serious troubles!

Tickets concept -- PAXOS

Weaker than locks

Reissuable: new tickets can be issued even if old ones not returned

Expiration: a ticket accepted only if is it the most recent one

Ticket protocol --- 1-st trial

Algorithm 15.12 Naive Ticket Protocol

Phase 1

- Client asks all servers for a ticket

Phase 2

if a majority of the servers replied then

Client sends command together with ticket to each server

Server stores command only if ticket is still valid, and replies to client
else

Client waits, and then starts with Phase 1 again
end if

Phase 3

8: if client hears a positive answer from a majority of the servers then

10:
11:
12:

Client tells servers to execute the stored command
else

Client waits, and then starts with Phase 1 again
end if

Ticket protocol — 1t trial

Problem:

Client A may store the commands on majority, then postpone phase 3
Client B may store some commands

Client A says to execute the stored command

PAXOS

Algorithm 15.13 Paxos

Client (Proposer) Server (Acceptor)
Initializalion e
c 4 command to execute Thax = 0 < largest issued ticket

t =0 <« ticket number to try
C=_1 4 stored command
Tiore = 0 < ticket used to store C

- Ask all servers for ticket ¢

3: j.f t = THIE’L}{ tllEﬂ

4:
5
b

Tma}: =-1
Answer with ok(Tstore, C')
end if

Phase 2 . e

7. if a majority answers ok then
8: Pick (Tyore, 7') with largest Tiiore
9: if Tstore > 0 then

10: c— U
11: end if
12: Send propose(?, ¢) to same
majority
13: end if
14: if t = T, then
15: C=r¢

16: TEtDl‘E‘ =1
17: Answer success
18: end if

19:

20:
21:

if a eGSR TGRS

I e

o -
(Tl LW ELELULERL;/J Ly VLY el vl

end 1if

Lemma 15.14. We call a message propose(t,c) sent by clients on Line 12 a
proposal for (t,c). A proposal for (t,c) is chosen, if it is stored by a majority of
servers (Line 15). For every issued propose(t',c') with t' >t holds that ¢’ = ¢,
if there was a chosen propose(t,c).

PAXOS properties

* only one propose(t,c) from a user for a given t
* Indeed, before the next propose phase 1 must be executed with t:=t+1

* Assume there is propose(t’,c’) with t’#t and c "#c
* let t’ be the smallest one with this property
* nonempty set S of servers that were involved in propose(t’,c’) and
propose(t,c)
e aserver s from S stored (t,c), it must have occurred before accepting ticket t’

* the client learns from s and is aware of c when issuing propose(t’,c’), where c
is the most recent seen by the client

* There is no more recent as c, as otherwise t” would not be minimal

4

PAXOS properties

COROLLARY If a command c is executed by some servers then
eventually it will be executed by all servers.

Indeed: after the 15t propose(t,c) every proposal will be for c

