
PWr, Inf. algo. CRYPTOGRAPHY, 2022 assignments list # 10, authentication (corrected)

1. One of the methods of authentication is to use one-time passwords printed under scratch fields.

An option is to use a chain of hashes:

• choose r at random,

• put π1000 = r

• for i < 1000, πi := Hash(πi+1)

Then, the password used in the ith round is πi.

How to store efficiently the passwords on the side of a system? How to extend the method so that,
say, 1.000.000 one-time passwords can generated?

2. For authentication based on login and password, the password entered by a user should be compared
with the password stored for this user by the system.

Compare the following options for storing users’ passwords. For storing a password π of user U ,
there is the following record with the index U :

via encryption: EncK(π), where K is a secret key of the system,

via encryption with salt: [EncK(π, r), r], where K is a secret key of the system, r is chosen at
random for this record,

via hashing: Hash(π),

via hashing with salt: [Hash(π, r), r], where r is chosen at random for this record,

via HMAC with salt: [HMACK(π, r), r], where is a secret key of the system, r is chosen at ran-
dom for this record,

Which method MUST NOT be used in practice and why?

3. Read the specification available via the following url:
https://one.google.com/about/vpn/howitworks

List all threats/attacks that apply for the traditional approach and which disappear once the method
described in the specification is used.

4. Assume that for Schnorr identification protocol the pseudo-random generator turns out to be weak.
What may happen?

5. HB and HB+ authentication protocols have been designed in order to use only linear algebra.

HB+ works as follows. The shared secret are the binary vectors x and y. Authentication of A
requires executing the following round multiple times:

(a) A chooses a vector b at random and sends b to Verifier,

(b) Verifier chooses a vector a at random and sends a to A,

(c) A computes z =< a, x > ⊕ < b, y > ⊕e, where bit e equals 1 with probability p, ⊕ denotes
the XOR operation, and < a, x > is the scalar product of vectors a and x

(d) A sends z to Verifier,

(e) Verifier computes z′ =< a, x > ⊕ < b, y >, the round succeeds for him if z = z′



Verifier accepts A if an appropriate majority of rounds succeeds (what is “appropriate” follows
from probability theory).

(a) this scheme is related to the LPN problem. In which way?

(b) HB+ is nevertheless insecure. The attacker changes a sent by the verifier to a′ := a ⊕ δ – in
each round with the same vector δ – and observes what happens.
How does this help the attacker to collect information on the secret key?

/-/ Mirosław Kutyłowski


