- 1. Let us recall the original protocol SPEKE by D.Jablon mentioned during the lecture. Let π be the shared password, let f be a function that maps passwords to a group G where DDH problem is hard.
 - **1a)** Alice chooses x_A at random and sends $X_A := (f(\pi))^{x_A}$ to Bob,
 - **1b**) Bob chooses x_B at random and sends $X_B := (f(\pi))^{x_B}$ to Alice,
 - **2a)** Alice computes $K = \text{Hash}(X_B^{x_A})$
 - **2b)** Bob computes $K = \text{Hash}(X_A^{x_B})$

- **3**) Alice chooses C_A at random and sends $E_1 := \text{Enc}_K(C_A)$ to Bob,
- 4)) Bob decrypts E_1 , chooses C_B at random and sends $E_2 := \text{Enc}_K(C_B, C_A)$ to Alice,
- 5) Alice decrypts E_2 , checks if C_A is in the plaintext, computes $E_3 := \text{Enc}(C_B)$ and sends it to Bob,
- 6) Bob decrypts E_3 , and compares the plaintext obtained with C_B
- I. Analyze the protocol and check that:
- (a) an observer that can see all messages cannot find π (even if he has a small dictionary of all passwords that can be used by Alice and Bob),
- (b) a man-in-the-middle attack fails against SPEKE,
- (c) a replay attack fails against SPEKE.

II. What is the motivation for steps 3-6? What could happen in case that these steps are eliminated from the protocol?

/-/ Mirosław Kutyłowski