CRYPTOGRAPHY LECTURE, 2022 Computer Science and Algorithmics, PWr Mirosław Kutyłowski

PKI- Public Key Infrastructure

Problem

how do you know that public key PK corresponds to Alice?

If you do not know this then electronic signatures, authentication, ...

- everything is useless

Idea 1: identity based cryptography

- public key is derived from uniques identifier
- secret key derived by trusted KGC (Key Generation Center)
- solutions based for encryption, signatures, using bilinear mappings e
 - $e: G_1 \times G_2 \rightarrow G_T$
 - $\bullet \ e(g^a,g^b) = e(g,g)^{a \cdot b}, \quad e(g,g) \neq 1$
 - typically notation additive (like for elliptic curves)
 - note: in presence of $e: G_1 \times G_1 \rightarrow G_T$ DDH is easy: A, B, C is a DH triple iff

$$e(A,B) = e(g,C)$$

(bilinear mappings not much used so far in practice, but easy construction of schemes)

Boneh-Franklin ID based encryption

Setup: private key: random s public key: $K_{pub} := s \cdot P$

(P is group generator)

User keys: $Q_{\text{ID}} := \text{Hash}(\text{ID})$ is public key for ID

secret key: $s \cdot Q_{\rm ID}$

Encryption of *m*:

i. choose r at random

ii. $g_{\text{ID}} := e(K_{\text{pub}}, Q_{\text{ID}})$

iii. ciphertext $c = (r \cdot P, m \oplus \text{Hash}(g_{\text{ID}}^r))$

Boneh-Franklin ID based encryption

Encryption of m:

- i. choose r at random
- ii. $g_{\text{ID}} := e(K_{\text{pub}}, Q_{\text{ID}})$
- iii. ciphertext $c = (r \cdot P, m \oplus \operatorname{Hash}(g_{\operatorname{ID}}^r))$

Decryption of c = (u, v):

 $m := v \oplus \operatorname{Hash}(e(u, s \cdot Q_{\mathrm{ID}}))$

Why it works?

$$g_{\mathrm{ID}}^{r} = e(K_{\mathrm{pub}}, Q_{\mathrm{ID}})^{r} = e(s \cdot P, Q_{\mathrm{ID}})^{r} = e(P, Q_{\mathrm{ID}})^{r \cdot s}$$
$$e(u, s \cdot Q_{\mathrm{ID}}) = e(r \cdot P, s \cdot Q_{\mathrm{ID}}) = e(P, Q_{\mathrm{ID}})^{r \cdot s}$$

Certificate (X.509 standard)

essentially: digitally signed sentence "K is the public key of Alice" important fields:

- key usage (admitted usage of K)
- algorithms
- owner (Alice)
- issuer Certificate Authority
- issued at . . .
- valid until ...
- certification policy link

Problem: how to verify? Public key of CA needed

Certificate chain

- root CA
- subordinate CA's
- users (their certificates have key usage # signing certificates)

Certificate validation: go to the root, root self-certificate must be trusted manually

Validity

what if a card with a secret key gets stolen?

 \Rightarrow the certificate has to be invalidated

Solution

- CRL -Certificate Revocation List (contains only revoked certificates that has not expired yet)
- OCSP Online Certificate Status Protocol (lookup in CRL)

Unsolved problem: time between revocation request and CRL publication

Short time certificates

do not care about revocation - they expire soon anyway

used for certificates of Document Verifiers (border control,...) interacting with biometric passports

Mediated signatures

no need to verify validity of certificates:

example for RSA

- split the private key d to $d = d_1 \cdot d_2 \mod (p-1)(q-1)$
- d_1 stored locally on a card, d_2 on the server
- computing $a^d \mod n$:
 - i card computes $c_1 := a^{d_1}$ and send to the server
 - ii server checks policy, revocation list ...
 - iii ... if ok then returns $c_2 := c^{d_2}$

instantenous revocation, monitoring , ...

used in Estonia after disaster with personal ID cards

Forging certificates

"certificates, or certified lies"

from history of attacks:

- i. not an attack on the signature but via weak hash function
- ii. finding collision it changes key and key usage (from user to CA certifying software)
- iii. then issue a signature for Operating System update a malicious one containing malware

Basic list of root CA'a

for servers: check how many of them are from EU

for digital signatures: in EU in each country a list of CA for qualified issuers

bridge certificates

Alternative approach: SPKI

public key is the ID

extension of Access Control List