
CRYPTOGRAPHY LECTURE, 2022

Computer Science and Algorithmics, PWr

Mirosªaw Kutyªowski

PRNG

PRNG - pseudorandom number generator

− input is a random seed s

− PRNG(s) is a long string that �looks as random�

− PRNG is a deterministic function



Application: Stream ciphers (szyfry strumieniowe)

key: k (chosen at random)

encrypting a long message M :

− � :=PRNG(k) truncated to the length of M

− c :=�
M (bitwiseXOR)

decryption:

− M := c
�

Protection against reuse of �:

− the PRNG has an internal state

− state updated after each use



Desired properties of PRNG

− PRNG(k) truncated to m bits is a uniformly distributed random variable
if k is uniformly distributed seed

! impossible if m> length(k):

there are 2m bitstrings of length m

but there are only 2length(k) outputs of PRNG of length m



Computational indistinguishability

it is enough if you cannot distinguish an output of PRNG from a random source

Left-or-right game:

in a blackbox: either

i. a real random source with uniform distribution, or

ii. a PRNG initiated with a random seed

Task: guess what is in the blackbox while observing its output

Advantage �

if probability to win is 1
2+�



Formal definition of computational indistiguishability

two sources X0; X1 are computationally indistinguishable if for any (polyno-
mial) algorithm A:

j Pr(A(x)= 0jx=X1) − Pr(A(x)= 0jx=X0) j

is negligible

Security analysis for proposed PRNG

trying to find an A where it is not true, where A is (to some degree) practical

called �distinguishing attack�



Particular formulation

algorithm A should guess whether the output comes from X0 or X1

Theorem

Both formulations are equivalent

consequences:

− 1st formulation excludes any observable difference of X0 and X1

− 2nd formulation: easier for checking properties of PRNG



Unpredictability

given the output b0: : :bn of an PRNG it is infeasible to predict bn+1

Backwards security

if internal state sm is leaked, then it is infeasible to derive any information on
b0b1: : :bm−1

Applications:

think about confidentiality of phone conversations (they are secured with stream
ciphers!)



PRNG

− deterministic function D from n bit seeds to m bit strings

− output of D computationally indistinguishable from a real random source
with uniform distribution over m-bit strings

Construction with HCP (hardcore predicate) , m=1:

− f is a one-way permutation, h � hardcore predicate

− G(s) := f(s)jjh(s)

(a toy example as the output is longer than the seed by 1 bit only)



Example

one way function: f(x)=xd modn (RSA ciphertext)

h(f(x))=xmod 2



More efficient construction

− s0 := s

− s1jjb0 :=G(s0)

− s2jjb1 :=G(s1)

− . . .

− sn+1jjbn :=G(sn)

− output b0b1: : :bn

Thm. If G is constructed via one-way permutation f and and hardcore pred-
icate h, then the above construction yields a PRNG indistinguishable from real
random source



Draft of a proof

Version i

− s0 := s

− b0 at random

− b1 at random

− . . .

− si at random, bi−1 at random

− si+1jjbi :=G(si)

− . . .

− sn+1jjbn :=G(sn)

− output b0b1: : :bn

Distinguishing version i and version i+1 ) distinguisher breaking HCP



Draft continued

version 0 � PRNG

version 1

version 2

. . .

version n � real random source



PRNG practice

− initialization: the seed recomputed with auxiliary input from the user and
internal randomness �entropy �

− reseeding: similar as above, entropy bits taken



goals:

− internal state of PRNG is user dependent (but dependance limited)

− limited number of bits with one deterministic function

− noise from entropy

typical operation cycle:

− after initialize/refresh: run for some time, discarding output

− work and yield output

− refresh when the refresh_conter reaches 0



RC4

PRNG based on the idea of a random shuffling of cards

Ron's Cipher � designed by Ronald Rivest from MIT

some weaknesses

phases:

1. initialization with the secret key, no output, runs for some time

2. generation of random bytes : internal state changed at every stage



RC4, initialization phase

for i from 0 to 255

S[i] := i

j := 0

for i from 0 to 255

j := (j + S[i] + key[i mod keylength]) mod 256

swap(S[i],S[j])



RC4 output generation

i:= 0
j:= 0

wwwwwwwwwhhhhhhhhhiiiiiiiiillllllllleeeeeeeee output is needed:
i:= (i + 1) mod 256
j:= (j + S[i]) mod 256
swap(S[i],S[j])
output S[(S[i] + S[j]) mod 256]



CCCCCCCCChhhhhhhhhaaaaaaaaaCCCCCCCCChhhhhhhhhaaaaaaaaa

− European algorithm, former version: Salsa, from eStream competition

− design goals: easy software implementation, any platform, . . .

− follows architecture borrowed from stream ciphers

− working on 32 bit words

quarter-round of ChaCha20

1. a= a+ b ; d= d xor a ; d= dn 16

2. c= c+ d ; b= b xor c ; b= bn 12

3. a= a+ b ; d= d xor a ; d= dn 8

4. c= c+ d ; b= b xor c ; b= bn 7



Initialization

Chacha matrix 4x4: (where 'input' = `block counter'+nonce)

const const const const

key key key key

key key key key

input input input input



Output generation

20 rounds executed, the contents of the matrix is the output,

round: consists of 8 quarter-rounds

− quarter-rounds on: 1st column, 2nd column, 3rd column, 4th column

− quarter-round on diagonals

quarter− round(x0; x5; x10; x15),

quarter− round(x1; x6; x11; x12)

quarter− round(x2; x7; x8; x13)

quarter− round(x3; x4; x9; x14)

output: the matrix contents

restart: with the next block counter



Open competitions for cryptographic primitives

− mainly by NIST

− open evaluation

− the whole community involved in looking for weaknesses

− works better than design in secrecy (e.g. GHOST)



Alternative constructions

− from block encryption

− from asymmetric algorithms

− from hash functions

Hardware generators:

− physical source might be ok but:

! measurement bias

! digital processing

! physical attacks (low temperature, . . . )

! non-verifiability

− quantum generators: expensive, poor output

− NIST recommendation some time ago: use PRNG





Remembering long random strings

− many protocols need it

− instead of storing the output of PRNG, just remember the seed and reconstruct

− ChaCha - easy (generate again with the same key and block number)

− basic PRNG wihout restarting: not efficient

− option: tree-like construction (in the textbook)


