CRYPTOGRAPHY LECTURE, 2022 Computer Science and Algorithmics, PWr Mirosław Kutyłowski

Symmetric encryption

"symmetric"

- *−* the same key used for encryption and decryption
- − two subcategories:
	- *−* stream ciphers (already discussed)
	- *−* block ciphers Enc: Keyspace \times $\{0, 1\}^k$ \rightarrow $\{0, 1\}^m$

(typically $k = m$ and $k = 128, 256, 512, \ldots$ but not much higher

CPA

Chosen plaintext attack (CPA):

- *−* adversary can ask for pairs (plaintext,ciphertext)
- *−* non-adaptive CPA: the pairs are given before analysis starts
	- *−* the case when an attacker knows the messages encrypted (e.g. if stolen secret documents are leaked to a spy)
- *−* adaptive CPA: the attacker can ask for a ciphertext of any plaintext
	- *−* the case when an attacker holds a tamper-proof device and wishes to learn the key stored inside

KPA

Known plaintext attack (KPA):

− adversary has pairs (plaintext,ciphertext) but cannot choose them

Usually situation harder for breaking a cipher:

- i. impossible to use plaintexts with some dependencies
- ii. so e.g. *differential cryptanalysis* does not apply

Key length, CPA, KPA and brute force attack:

- *−* try all keys:
	- *−* for a key *K* and pair (*P ; C*) of (plaintext,ciphertext) test if

 $\text{Enc}_K(P) = C$?

- $-$ if \neq , then K is wrong
- *−* if =, then with a high probability *K* is correct
- *−* if the key has 128 bits, then at average 2 127 tests needed
- $-$ a year \approx 2^{25} seconds, if 1 million tests per second, then \approx 2^{45} tests per year
- *−* use 1 million computers and 1024 years: 2 75 tests
	- *[−]* probability to success 2*−*⁵³ (practically =0)

Conclusion: brute force attack does not work for any reasonable key size provided that the keys are random

Key length and brute force attack

- *−* the conclusion does not apply to the case where the key space is small:
	- *−* memorizable passwords
	- *−* long sentences in natural languages (e.g. parts of "Pan Tadeusz")
	- *−* anything one can guess

Case: WIFI passwords (usually not a string of random 80 characters)

Ciphertext-only attack

the attacker knows only a set of ciphertexts.

Test: trial decrypt and look if the obtained plaintext makes sense (a message in a natural language)

The test does not work if the plaintext is a random string (e.g. a key)

Key is not the only target!

− some possible plaintext

− e.g.:

 P_1 = "concentration point for the aircraft carriers is north of Midway" or

 P_2 = "concentration point for the aircraft carriers is south of Midway"

− or US Navy it was enough to learn whether *C* encrypts *P*¹ or *P*² , it is not necessary to learn Japanese secret key used

Semantic security

given plaintexts P_1 , P_2 , a ciphertext C encrypting P_b where b is chosen at random, then

it is infeasible to learn *b* with non-negligible advantage

Double encryption - warning

an idea to increase the key size: encrypt twice with different keys

 $\text{Enc}_{K,K'}(M) = \text{Enc}_{K}(\text{Enc}_{K'}(M))$

brute force seems to be much harder (guess twice as many bits!) but this is not Attack based on birthday paradox

Triple DES

 $\text{Enc}_{K,K'}(M) = \text{Enc}_{K}(\text{Dec}_{K'}(\text{Enc}_{K}(M)))$

- *−* if *K* = *K⁰* then it reduces to DES (backwards compatibility)
- *−* birthday attack does not work

Avelanche effect (efekt lawinowy)

If the keys K_1 and K_2 are somehow related (e.g. differ by just 1 bit), then it is infeasible to guess any relationship between $\text{Enc}_{K_1}(M)$ and $\text{Enc}_{K_2}(M)$

Otherwise: it would be easier to break codes like in the movies

Block ciphers

- *−* each plaintext is a block of a fixed length
- *−* Enc: $\{0, 1\}^k \times \{0, 1\}^m \rightarrow \{0, 1\}^m$

Notes:

1) the ciphertext cannot be shorter than the plaintext - Shannon's theorem 2) ciphertext longer than a plaintext might be a problem for practical reasons

- \rightarrow encrypting a whole disk would require moving to a larger disk!
- \rightarrow problem for operating system (pagesize, ...)

Choice of block size *m*

- *−* very small *m* problematic: frequence analysis attack
- *−* large *m* problematic: difficulty to run encryption/decryption efficiently on weak machines
- *−* compromise: AES: *m* = 128, its proposal (Rijndael): *m* = 128*;* 192*;* 256

AES competition (Advanced Encryption Standard)

- $−$ run by NIST $−$ a US authority
- *−* open competition
- *−* narrowing the list of candidates, workshops, call for comments, attacks, ...
- *−* public set of requirements

Some requirements

platform independent:

- *−* efficient both on special hardware and general purpose computers
- *−* open for different implementation strategies:
	- *−* via (complex) algebraic operations
	- *−* with lookup tables

- *−* formerapproach (DES Data Encryption Standard from 1975): design it so that
	- *−* a software implementation should be very slow
	- *−* a hardware implementation isvery fast

Some requirements

transparency:

- *−* no mysterious components, no security by obscurity
- *−* whitepaper MUST explain the construction

Rounds

idea: repeat the same operations $-$ e.g. 10 identical rounds (with different data)

- *−* easier to implement (codesize!, hardware size!)
- *−* easier security analysis

Key Schedule

for each round a different subkey

- *−* subkeys derived from the main key via some algorithm (key schedule)
- − subkeys should be "independent" and not ease cryptoanalysis

AES - construction of Rijndael

- *−* working on a table of 4 *-* 4 table of bytes
- *−* 10 rounds (initial round and the last round are slightly different)
- *−* a round consists of 4 parts:
	- \rightarrow SubBytes $-$ a [non-linear](https://en.wikipedia.org/wiki/Linear_map) substitution according to a [lookup](https://en.wikipedia.org/wiki/Rijndael_S-box) [table](https://en.wikipedia.org/wiki/Rijndael_S-box) (S-Box)
	- \rightarrow ShiftRows cyclic shift on rows: 0-shift on row 0, 1-shift on row 1, 2-shift on row 2, 3-shift on row 3

- \rightarrow MixColumns $-$ a linear operation on each column
- AddRoundKey: xor with round subkey

AES details

MixColumns operation:

linear algebra view:

$$
\begin{bmatrix} b_{0,j} \\ b_{1,j} \\ b_{2,j} \\ b_{3,j} \end{bmatrix} = \begin{bmatrix} 2 & 3 & 1 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 3 \\ 3 & 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} a_{0,j} \\ a_{1,j} \\ a_{2,j} \\ a_{3,j} \end{bmatrix} 0 \le j \le 3
$$

or as polynomials over $\mathrm{GF}(2^8)$:

polynomial $b(x) = b_3x^3 + b_2x^2 + b_1x + b_0$ multiplied by $a(x) = 3x^3 + x^2 + x + 2$ modulo x^4+1

Alternative implementation with lookup tables

$$
(x_0^{(r+1)}, x_1^{(r+1)}, x_2^{(r+1)}, x_3^{(r+1)}) := T_0(x_0^r) \oplus T_1(x_5^r) \oplus T_2(x_{10}^r) \oplus T_3(x_{15}^r) \oplus K_0^{(r+1)}
$$

$$
(x_4^{(r+1)}, x_5^{(r+1)}, x_6^{(r+1)}, x_7^{(r+1)}) := T_0(x_4^r) \oplus T_1(x_9^r) \oplus T_2(x_{14}^r) \oplus T_3(x_3^r) \oplus K_1^{(r+1)}
$$

$$
(x_8^{(r+1)}, x_9^{(r+1)}, x_{10}^{(r+1)}, x_{11}^{(r+1)}) := T_0(x_8^r) \oplus T_1(x_{13}^r) \oplus T_2(x_2^r) \oplus T_3(x_7^r) \oplus K_2^{(r+1)}
$$

$$
(x_{12}^{(r+1)}, x_{13}^{(r+1)}, x_{14}^{(r+1)}, x_{15}^{(r+1)}) := T_0(x_{12}^r) \oplus T_1(x_1^r) \oplus T_2(x_6^r) \oplus T_3(x_{11}^r) \oplus K_3^{(r+1)}
$$

Feistel construction

- $−$ round organization so that it is "one-way" but stil invertible
- many symmetric encryption schemes follow this trick
- Diagram (from Wikipedia, ignore the part tekst jawny and szyfrogram):

Feistel construction:

round *i*: intermediate state (*Li; Ri*)

encryption in round $i + 1$:

 $L_{i+1} = R_i$

 $R_{i+1} = L_i \otimes F(R_i, K_i),$

decryption in the reverse order of rounds:

 $R_i = L_{i+1}$

 $L_i = R_{i+1} \otimes F(L_{i+1}, K_i).$

Standard Attack Methods

- 1. differential cryptanalysis
- 2. linear cryptanalysis
- 3. side channel leakage
- 4. fault cryptanalysis

Differential cryptanalysis

- S-boxes is a source of problem:
	- $−$ inputs: X and $X \otimes \Delta$ (difference Δ)
	- $-$ after adding a round subkey: $X \otimes K, \quad X \otimes \Delta \otimes K$
	- *−* adding the round key *K* does not change the difference
	- *−* what is the difference after applying the S-Box?
	- *−* precomputed table:

...

 $A, A \otimes \Delta \rightarrow A', A' \otimes \Delta_1$

 $B, B \otimes \Delta \rightarrow B', B' \otimes \Delta_2$

− observe output difference. If it is, say, 2*;* then we may assume that $X \otimes K = B$, or $X \otimes K = B \otimes \Delta$ and solve for K

... not that easy

because we do not know the output of the S-Box

Construction of characteristics:

- 1 assuming that at a given place S the difference is Δ' estimate probabilities that in the output the difference at a certain point *D* is Γ
- 2 if the assumption about the difference at *S* was false, then assume that at *D* the differences are totally random

in case 1 the differences are usually very small, ... but with a large number of pairs of inputs X , $X\otimes \Delta$ one can see some statistical bias indicating true value of Λ'

Finding effective charateristics: very complex task

Linear cryptanalysis

non-linear operations (S-Boxes) approximated by linear operations

- *−* find linear equations in input bits, output bits and key bits that are true for more than 50% of cases
- *−* move keybits to one side and other bits to the other side -- thus get an expression for keybits
- *−* advantage should be statistically observable

Toy Example

 $i_{17} \otimes i_{64} \otimes k_{23} \!=\! o_{22} \otimes 1$ that is true with probability $\,$ $\,0.50000123483029$

yields an expression:

 $k_{23} = o_{22} \otimes 1 \otimes i_{17} \otimes i_{64}$

that is more likely to be true than false

gather statistics, after some number of samples there will be a strong bias towards the true value

in practice we have to combine the expressions from all rounds

Side channel leakage

leakage via operations executed.

Power analysis:

- executing $x := x \otimes k$ means swapping the bit x if $k = 1$ and no change otherwise
- changing the state of a 1-bit memory costs more energy than keeping the old value

so observe that power consumption to learn *k*

problems in practice:

- i. noise
- ii. sampling power traces
- iii. finding the right moment

Fault attacks

- 1. encrypt *M* with (hidden) key *K*
- 2. encrypt *M* with *K* again, but with a laser set one bit register *A* to 1
- 3. compare the results. If unequal, then originally *A* contained a 0

example attack point:

an input bit XOR-ed with the key bit during the last round of AES

Encryption modes for block encryption schemes

- *b* what if the plaintext is not a single block as described for Enc?
- *−* needed: encryption modes that enable to encrypt a file of any length

Padding:

padd the plaintext so that it can be divided to some number of full blocks: i.e. $128 \cdot n$ for AES with 128 bit blocks padding must be reversible

(e.g. the last byte in the block must say how many bits have been added)

Initial vector

- $−$ many modes require IV $-$ the initial vector
- *−* thumb rule: never repeat the same IV with the same key
- *−* use for instance: current time + counter value
- *−* IV transmitted in clear!

Electronic Codebook (ECB)

- $C_i = \text{Enc}_K(P_i)$
- advantages:
	- *−* simple
	- *−* modification of a single block of plaintext *)* modification of one block of ciphertext
- deadly threats:

− if *Pⁱ* = *P^j* then *Cⁱ* = *Cj:* This leaks a lot of information!

Cipher Block Chaining (CBC)

encryption:

$$
C_{i+1} = \text{Enc}_K(C_i \otimes P_{i+1}),
$$

$$
C_0 = \text{IV}
$$

decryption:

$$
P_{i+1} = \text{Dec}_K(C_{i+1}) \otimes C_i
$$

advantages:

- $P_i = P_i$ does not imply that $C_i = C_i$
- *−* C_i depends on P_1, \ldots, P_i
- *−* manipulation on one ciphertext block destroys all remaining plaintext blocks

disadvantages:

− replacing a single plaintext block requires re-encryption starting at this block (think about disk encryption!)

Cipher Feedback mode (CFB)

Encryption:

 $C_0 =$ IV

 $C_{i+1} = \text{Enc}_K(C_i) \otimes P_{i+1}$

decryption:

 $P_{i+1} = C_{i+1} \otimes \text{Dec}_K(C_i)$

Advantages:

- *−* C_i depends on all P_1, \ldots, P_i
- *−* some advantage with encryption rate if *Pi*'s come irregularly

Counter mode (CTR)

encryption

 $Y_i = \text{Enc}_K(V + f(i))$, where *f* is some counter function $C_i = Y_i \otimes P_i$

decryption

 $Y_i = \text{Enc}_K(V + f(i)),$

 $P_i = Y_i \otimes C_i$

(dis)advantages:

− in order to replace *Pⁱ* by *Pⁱ ⁰* it suffices to compute

 $C_i := C_i \otimes (P_i \otimes P'_i)$

− ... so it is better to use authenticated CTR mode

(ps: use CCM and not GCM! if you need explanation enroll to Security& Cryptography Master program)

Authenticated block encryption mode

change the encryption scheme so that:

• a manipulation of a ciphertext results in an invalid ciphertext with very high probability

AES+ CBC

a change in one block results in changes in two (unpredictable) changes in two consecutive plaintext blocks

(recall that $P_{i+1} = \mathrm{Dec}_K(C_{i+1}) \otimes C_i$)

 \rightarrow usually after such manipulation we get 2 blocks of random nonsense

 \rightarrow ... but if the plaintext was a random string, then one cannot detect the manipulation

Format Preserving Encryption

- standard block ciphers have certain minimal length: blocksize=128, ...
- encrypting *n*-bit plaintext to *n*-bit ciphertexts is not a problem if $n \geq 1$ blocksize
- the challenge is: how to convert *k*-bit strings into *k*-bit ciphertexts for small *k*?
	- *−* application: encrypting credit card number in a record of the same size in a database

Challenges:

- i scaling down constructions such as AES is not a good idea: their security argument depend heavily on the necessary block size
- ii $\,$ if an attack requires $2^{\rm blocksize/2}$ steps, then it is ok for AES $(2^{64}\,$ steps is a huge number) while for $\text{blocksize}=24$, making 2^{12} steps is a negligible effort

Solution ideas:

idea 1: *m* bit plaintext *X*, *n*-bit block cipher Enc with key *K*

- $C := 0^{n-m}$ ||X
- ii. $C := \text{Enc}_K(C)$
- iii. if *^C* starts with *ⁿ [−]^m* zeroes, then output *^C*after truncating these zeroes, else goto ii

Decryption (obvious)

disadvantage: encryption and decryption times are random variables, computationally intensive

Feistel constructions

the orange circle stands for, say AES for input padded with *m* zeroes, while in the output *m* bits are truncated

NIST Standards

FF1, FF3, (FF2 broken during the standardization process)

- *−* number of rounds below what suggested by cryptographers
- *−* security broken if you may query some number of (plaintext, ciphertext) pairs
- *−* some design decisions not compliant with the state-of -the-art

nevertheless offered and used