CRYPTOGRAPHY LECTURE, 2022 Computer Science and Algorithmics, PWr Mirosław Kutyłowski

Symmetric encryption

"symmetric"

- $-\,$ the same key used for encryption and decryption
- two subcategories:
 - stream ciphers (already discussed)
 - block ciphers Enc: Keyspace $\times \{0, 1\}^k \rightarrow \{0, 1\}^m$

(typically k = m and $k = 128, 256, 512, \ldots$ but not much higher

CPA

Chosen plaintext attack (CPA):

- adversary can ask for pairs (plaintext,ciphertext)
- **non-adaptive CPA:** the pairs are given before analysis starts
 - the case when an attacker knows the messages encrypted (e.g. if stolen secret documents are leaked to a spy)
- adaptive CPA: the attacker can ask for a ciphertext of any plaintext
 - the case when an attacker holds a tamper-proof device and wishes to learn the key stored inside

KPA

Known plaintext attack (KPA):

- adversary has pairs (plaintext, ciphertext) but cannot choose them

Usually situation harder for breaking a cipher:

- i. impossible to use plaintexts with some dependencies
- ii. so e.g. *differential cryptanalysis* does not apply

Key length, CPA, KPA and brute force attack:

- try all keys:
 - for a key K and pair (P, C) of (plaintext, ciphertext) test if

 $\operatorname{Enc}_{K}(P) = C?$

- if \neq , then K is wrong
- if =, then with a high probability K is correct
- $-\,$ if the key has 128 bits, then at average 2^{127} tests needed
- -~ a year ${\approx}2^{25}$ seconds, if 1 million tests per second, then ${\approx}2^{45}$ tests per year
- use 1 million computers and 1024 years: 2^{75} tests
 - probability to success 2^{-53} (practically =0)

Conclusion: brute force attack does not work for any reasonable key size provided that the keys are random

Key length and brute force attack

- the conclusion does not apply to the case where the key space is small:
 - memorizable passwords
 - long sentences in natural languages (e.g. parts of "Pan Tadeusz")
 - anything one can guess

Case: WIFI passwords (usually not a string of random 80 characters)

Ciphertext-only attack

the attacker knows only a set of ciphertexts.

Test: trial decrypt and look if the obtained plaintext makes sense (a message in a natural language)

The test does not work if the plaintext is a random string (e.g. a key)

Key is not the only target!

- some possible plaintext

– e.g.:

 $P_1\!=\!$ ''concentration point for the aircraft carriers is north of Midway'' or

 P_2 = "concentration point for the aircraft carriers is south of Midway"

- or US Navy it was enough to learn whether C encrypts P_1 or P_2 , it is not necessary to learn Japanese secret key used

Semantic security

given plaintexts P_1, P_2 , a ciphertext C encrypting P_b where b is chosen at random, then

it is infeasible to learn b with non-negligible advantage

Double encryption - warning

an idea to increase the key size: encrypt twice with different keys

 $\operatorname{Enc}_{K,K'}(M) = \operatorname{Enc}_{K}(\operatorname{Enc}_{K'}(M))$

brute force seems to be much harder (guess twice as many bits!) but this is not Attack based on birthday paradox

Triple DES

 $\operatorname{Enc}_{K,K'}(M) = \operatorname{Enc}_{K}(\operatorname{Dec}_{K'}(\operatorname{Enc}_{K}(M)))$

- if K = K' then it reduces to DES (backwards compatibility)
- birthday attack does not work

Avelanche effect (efekt lawinowy)

If the keys K_1 and K_2 are somehow related (e.g. differ by just 1 bit), then it is infeasible to guess any relationship between $\operatorname{Enc}_{K_1}(M)$ and $\operatorname{Enc}_{K_2}(M)$

Otherwise: it would be easier to break codes like in the movies

Block ciphers

- each plaintext is a block of a fixed length
- $\operatorname{Enc:} \{0,1\}^k \times \{0,1\}^m \mathop{\longrightarrow} \{0,1\}^m$

Notes:

the ciphertext cannot be shorter than the plaintext - Shannon's theorem
 ciphertext longer than a plaintext might be a problem for practical reasons

- \rightarrow encrypting a whole disk would require moving to a larger disk !
- \rightarrow problem for operating system (pagesize, ...)

Choice of block size m

- very small m problematic: frequence analysis attack
- $-\,$ large m problematic: difficulty to run encryption/decryption efficiently on weak machines
- compromise: AES: m = 128, its proposal (Rijndael): m = 128, 192, 256

AES competition (Advanced Encryption Standard)

- run by NIST a US authority
- open competition
- narrowing the list of candidates, workshops, call for comments, attacks, ...
- public set of requirements

Some requirements

platform independent:

- efficient both on special hardware and general purpose computers
- open for different implementation strategies:
 - via (complex) algebraic operations
 - with lookup tables

- former approach (DES Data Encryption Standard from 1975): design it so that
 - a software implementation should be very slow
 - a hardware implementation is very fast

Some requirements

transparency:

- no mysterious components, no security by obscurity
- $-\,$ whitepaper MUST explain the construction

Rounds

idea: repeat the same operations – e.g. 10 identical rounds (with different data)

- easier to implement (codesize!, hardware size!)
- easier security analysis

Key Schedule

for each round a different **subkey**

- subkeys derived from the main key via some algorithm (key schedule)
- subkeys should be "independent" and not ease cryptoanalysis

AES - construction of Rijndael

- working on a table of 4×4 table of bytes
- 10 rounds (initial round and the last round are slightly different)
- a round consists of 4 parts:
 - \rightarrow SubBytes a non-linear substitution according to a lookup table (S-Box)
 - \rightarrow ShiftRows cyclic shift on rows: 0-shift on row 0, 1-shift on row 1, 2-shift on row 2, 3-shift on row 3

- $\rightarrow~$ MixColumns a linear operation on each ~ column
- \rightarrow AddRoundKey: xor with round subkey

AES details

MixColumns operation:

linear algebra view:

$$\begin{bmatrix} b_{0,j} \\ b_{1,j} \\ b_{2,j} \\ b_{3,j} \end{bmatrix} = \begin{bmatrix} 2 & 3 & 1 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 3 \\ 3 & 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} a_{0,j} \\ a_{1,j} \\ a_{2,j} \\ a_{3,j} \end{bmatrix} 0 \le j \le 3$$

or as polynomials over $GF(2^8)$:

polynomial $b(x) = b_3 x^3 + b_2 x^2 + b_1 x + b_0$ multiplied by $a(x) = 3x^3 + x^2 + x + 2$ modulo $x^4 + 1$

Alternative implementation with lookup tables

$$\begin{pmatrix} x_0^{(r+1)}, x_1^{(r+1)}, x_2^{(r+1)}, x_3^{(r+1)} \end{pmatrix} := T_0(x_0^r) \oplus T_1(x_5^r) \oplus T_2(x_{10}^r) \oplus T_3(x_{15}^r) \oplus K_0^{(r+1)}$$

$$\begin{pmatrix} x_4^{(r+1)}, x_5^{(r+1)}, x_6^{(r+1)}, x_7^{(r+1)} \end{pmatrix} := T_0(x_4^r) \oplus T_1(x_9^r) \oplus T_2(x_{14}^r) \oplus T_3(x_3^r) \oplus K_1^{(r+1)}$$

$$\begin{pmatrix} x_8^{(r+1)}, x_9^{(r+1)}, x_{10}^{(r+1)}, x_{11}^{(r+1)} \end{pmatrix} := T_0(x_8^r) \oplus T_1(x_{13}^r) \oplus T_2(x_2^r) \oplus T_3(x_7^r) \oplus K_2^{(r+1)}$$

$$\begin{pmatrix} x_{12}^{(r+1)}, x_{13}^{(r+1)}, x_{14}^{(r+1)}, x_{15}^{(r+1)} \end{pmatrix} := T_0(x_{12}^r) \oplus T_1(x_1^r) \oplus T_2(x_6^r) \oplus T_3(x_{11}^r) \oplus K_3^{(r+1)}$$

Feistel construction

- round organization so that it is "one-way" but stil invertible
- many symmetric encryption schemes follow this trick
- Diagram (from Wikipedia, ignore the part tekst jawny and szyfrogram):

Feistel construction:

round *i*: intermediate state (L_i, R_i)

encryption in round i + 1:

 $L_{i+1} = R_{i,}$

 $R_{i+1} = L_i \otimes F(R_i, K_i),$

decryption in the reverse order of rounds:

 $R_i = L_{i+1}$

 $L_i = R_{i+1} \otimes F(L_{i+1}, K_i).$

Standard Attack Methods

- 1. differential cryptanalysis
- 2. linear cryptanalysis
- 3. side channel leakage
- 4. fault cryptanalysis

Differential cryptanalysis

- S-boxes is a source of problem:
 - inputs: X and $X \otimes \Delta$ (difference Δ)
 - after adding a round subkey: $X \otimes K$, $X \otimes \Delta \otimes K$
 - $-\,$ adding the round key K does not change the difference
 - what is the difference after applying the S-Box?
 - precomputed table:

. . .

 $A, A \otimes \Delta \to A', A' \otimes \Delta_1$

 $B, B \otimes \Delta \to B', B' \otimes \Delta_2$

- observe output difference. If it is, say, Δ_2 , then we may assume that $X \otimes K = B$, or $X \otimes K = B \otimes \Delta$ and solve for K

... not that easy

because we do not know the output of the S-Box

Construction of *characteristics*:

- 1 assuming that at a given place S the difference is Δ' estimate probabilities that in the output the difference at a certain point D is Γ
- 2~ if the assumption about the difference at S was false, then assume that at D the differences are totally random

in case 1 the differences are usually very small, \ldots but with a large number of pairs of inputs X, $X\otimes\Delta$ one can see some statistical bias indicating true value of Δ'

Finding effective charateristics: very complex task

Linear cryptanalysis

non-linear operations (S-Boxes) approximated by linear operations

- find linear equations in input bits, output bits and key bits that are true for more than 50% of cases
- move keybits to one side and other bits to the other side -- thus get an expression for keybits
- advantage should be statistically observable

Toy Example

 $i_{17} \otimes i_{64} \otimes k_{23} = o_{22} \otimes 1$ that is true with probability 0.50000123483029

yields an expression:

 $k_{23} = o_{22} \otimes 1 \otimes i_{17} \otimes i_{64}$

that is more likely to be true than false

gather statistics, after some number of samples there will be a strong bias towards the true value

in practice we have to combine the expressions from all rounds

Side channel leakage

leakage via operations executed.

Power analysis:

- executing $x:=x\otimes k\,$ means swapping the bit x if k=1 and no change otherwise
- changing the state of a 1-bit memory costs more energy than keeping the old value

so observe that power consumption to learn \boldsymbol{k}

problems in practice:

- i. noise
- ii. sampling power traces
- iii. finding the right moment

Fault attacks

- 1. encrypt M with (hidden) key K
- 2. encrypt M with K again, but with a laser set one bit register A to 1
- 3. compare the results. If unequal, then originally A contained a 0

example attack point:

an input bit XOR-ed with the key bit during the last round of AES

Encryption modes for block encryption schemes

- what if the plaintext is not a single block as described for Enc?
- needed: encryption modes that enable to encrypt a file of any length

Padding:

padd the plaintext so that it can be divided to some number of full blocks: i.e. $128 \cdot n$ for AES with 128 bit blocks padding must be reversible

(e.g. the last byte in the block must say how many bits have been added)

Initial vector

- many modes require IV the initial vector
- $-\,$ thumb rule: never repeat the same IV with the same key
- use for instance: current time + counter value
- IV transmitted in clear!

Electronic Codebook (ECB)

- $C_i = \operatorname{Enc}_K(P_i)$
- advantages:
 - simple
 - modification of a single block of plaintext \Rightarrow modification of one block of ciphertext
- deadly threats:

- if $P_i = P_j$ then $C_i = C_j$. This leaks a lot of information!

Cipher Block Chaining (CBC)

encryption:

$$C_{i+1} = \operatorname{Enc}_K (C_i \otimes P_{i+1}),$$
$$C_0 = \operatorname{IV}$$

decryption:

$$P_{i+1} = \operatorname{Dec}_K(C_{i+1}) \otimes C_i$$

advantages:

- $P_i = P_j$ does not imply that $C_i = C_j$
- C_i depends on P_1, \ldots, P_i
- manipulation on one ciphertext block destroys all remaining plaintext blocks

disadvantages:

 replacing a single plaintext block requires re-encryption starting at this block (think about disk encryption!)

Cipher Feedback mode (CFB)

Encryption:

 $C_0 = \mathrm{IV}$

 $C_{i+1} = \operatorname{Enc}_K(C_i) \otimes P_{i+1}$

decryption:

 $P_{i+1} = C_{i+1} \otimes \operatorname{Dec}_K(C_i)$

Advantages:

- C_i depends on all P_1, \ldots, P_i
- some advantage with encryption rate if P_i 's come irregularly

Counter mode (CTR)

encryption

 $Y_i = \operatorname{Enc}_K(\operatorname{IV} + f(i))$, where f is some counter function $C_i = Y_i \otimes P_i$

decryption

$$Y_i = \operatorname{Enc}_K(\mathrm{IV} + f(i)),$$

 $P_i = Y_i \otimes C_i$

(dis)advantages:

- in order to replace P_i by P'_i it suffices to compute $C_i := C_i \otimes (P_i \otimes P'_i)$
- ... so it is better to use authenticated CTR mode

(ps: use CCM and not GCM! if you need explanation enroll to Security& Cryptography Master program)

Authenticated block encryption mode

change the encryption scheme so that:

• a manipulation of a ciphertext results in an invalid ciphertext with very high probability

AES+ CBC

a change in one block results in changes in two (unpredictable) changes in two consecutive plaintext blocks

(recall that $P_{i+1} = \operatorname{Dec}_K(C_{i+1}) \otimes C_i$)

 $\rightarrow\,$ usually after such manipulation we get 2 blocks of random nonsense

 \rightarrow \ldots but if the plaintext was a random string, then one cannot detect the manipulation

Format Preserving Encryption

- standard block ciphers have certain minimal length: blocksize=128, ...
- encrypting *n*-bit plaintext to *n*-bit ciphertexts is not a problem if $n \ge blocksize$
- the challenge is: how to convert k-bit strings into k-bit ciphertexts for small k?
 - application: encrypting credit card number in a record of the same size in a database

Challenges:

- i scaling down constructions such as AES is not a good idea: their security argument depend heavily on the necessary block size
- ii if an attack requires $2^{\text{blocksize}/2}$ steps, then it is ok for AES (2^{64} steps is a huge number) while for blocksize = 24, making 2^{12} steps is a negligible effort

Solution ideas:

idea 1: m bit plaintext X, n-bit block cipher Enc with key K

- i. $C := 0^{n-m} ||X|$
- ii. $C := \operatorname{Enc}_K(C)$
- iii. if C starts with n-m zeroes, then output $C {\rm after}$ truncating these zeroes, else goto ii

Decryption (obvious)

disadvantage: encryption and decryption times are random variables, computationally intensive

Feistel constructions

the orange circle stands for, say AES for input padded with m zeroes, while in the output m bits are truncated

NIST Standards

FF1, FF3, (FF2 broken during the standardization process)

- number of rounds below what suggested by cryptographers
- security broken if you may query some number of (plaintext, ciphertext) pairs
- some design decisions not compliant with the state-of -the-art

nevertheless offered and used