
CRYPTOGRAPHY LECTURE, 2022

Computer Science and Algorithmics, PWr

Mirosªaw Kutyªowski

Symmetric encryption

�symmetric�

− the same key used for encryption and decryption

− two subcategories:

− stream ciphers (already discussed)

− block ciphers � Enc:Keyspace�f0; 1gk!f0; 1gm

(typically k=m and k= 128; 256; 512; : : : but not much higher



CPA

Chosen plaintext attack (CPA):

− adversary can ask for pairs (plaintext,ciphertext)

− non-adaptive CPA: the pairs are given before analysis starts

− the case when an attacker knows the messages encrypted (e.g. if stolen
secret documents are leaked to a spy)

− adaptive CPA: the attacker can ask for a ciphertext of any plaintext

− the case when an attacker holds a tamper-proof device and wishes to
learn the key stored inside



KPA

Known plaintext attack (KPA):

− adversary has pairs (plaintext,ciphertext) but cannot choose them

Usually situation harder for breaking a cipher:

i. impossible to use plaintexts with some dependencies

ii. so e.g. differential cryptanalysis does not apply



Key length, CPA, KPA and brute force attack:

− try all keys:

− for a key K and pair (P ;C) of (plaintext,ciphertext) test if

EncK(P )=C?

− if =/ , then K is wrong

− if =, then with a high probability K is correct

− if the key has 128 bits, then at average 2127 tests needed

− a year �225 seconds, if 1 million tests per second, then �245 tests per year
− use 1 million computers and 1024 years: 275 tests

− probability to success 2−53 (practically =0)

Conclusion: brute force attack does not work for any reasonable key
size provided that the keys are random



Key length and brute force attack

− the conclusion does not apply to the case where the key space is small:

− memorizable passwords

− long sentences in natural languages (e.g. parts of �Pan Tadeusz�)

− anything one can guess

Case: WIFI passwords (usually not a string of random 80 characters)



Ciphertext-only attack

the attacker knows only a set of ciphertexts.

Test: trial decrypt and look if the obtained plaintext makes sense (a message
in a natural language)

The test does not work if the plaintext is a random string (e.g. a key)



Key is not the only target!

− some possible plaintext

− e.g.:

P1= �concentration point for the aircraft carriers is north of Midway�
or

P2= �concentration point for the aircraft carriers is south of Midway�

− or US Navy it was enough to learn whether C encrypts P1 or P2 , it is not
necessary to learn Japanese secret key used

Semantic security

given plaintexts P1; P2, a ciphertext C encrypting Pb where b is chosen at
random, then

it is infeasible to learn b with non-negligible advantage



Double encryption - warning

an idea to increase the key size: encrypt twice with different keys

EncK;K 0(M)=EncK(EncK 0(M))

brute force seems to be much harder (guess twice as many bits!) but this is not

Attack based on birthday paradox



Triple DES

EncK;K 0(M)=EncK(DecK 0(EncK(M)))

− if K =K 0 then it reduces to DES (backwards compatibility)

− birthday attack does not work



Avelanche effect (efekt lawinowy)

If the keys K1 and K2 are somehow related (e.g. differ by just 1 bit), then it
is infeasible to guess any relationship between EncK1(M) and EncK2(M)

Otherwise: it would be easier to break codes like in the movies



Block ciphers

− each plaintext is a block of a fixed length

− Enc: f0; 1gk�f0; 1gm!f0; 1gm

Notes:

1) the ciphertext cannot be shorter than the plaintext - Shannon's theorem

2) ciphertext longer than a plaintext might be a problem for practical reasons

! encrypting a whole disk would require moving to a larger disk !

! problem for operating system (pagesize, . . . )



Choice of block size m

− very small m problematic: frequence analysis attack

− large m problematic: difficulty to run encryption/decryption efficiently on
weak machines

− compromise: AES: m= 128, its proposal (Rijndael): m= 128; 192; 256



AES competition (Advanced Encryption Standard)

− run by NIST � a US authority

− open competition

− narrowing the list of candidates, workshops, call for comments, attacks, ...

− public set of requirements



Some requirements

platform independent:

− efficient both on special hardware and general purpose computers

− open for different implementation strategies:

− via (complex) algebraic operations

− with lookup tables

− former approach (DES - Data Encryption Standard from 1975): design it
so that

− a software implementation should be very slow

− a hardware implementation is very fast



Some requirements

transparency:

− no mysterious components, no security by obscurity

− whitepaper MUST explain the construction



Rounds

idea: repeat the same operations � e.g. 10 identical rounds (with different
data)

− easier to implement (codesize!, hardware size!)

− easier security analysis

Key Schedule

for each round a different subkey

− subkeys derived from the main key via some algorithm (key schedule)

− subkeys should be �independent� and not ease cryptoanalysis



AES - construction of Rijndael

− working on a table of 4� 4 table of bytes

− 10 rounds (initial round and the last round are slightly different)

− a round consists of 4 parts:

! SubBytes � a non-linear substitution according to a lookup table (S-Box)

! ShiftRows � cyclic shift on rows: 0-shift on row 0, 1-shift on row 1, 2-shift
on row 2, 3-shift on row 3

! MixColumns � a linear operation on each column

! AddRoundKey: xor with round subkey

https://en.wikipedia.org/wiki/Linear_map
https://en.wikipedia.org/wiki/Linear_map
https://en.wikipedia.org/wiki/Linear_map
https://en.wikipedia.org/wiki/Rijndael_S-box
https://en.wikipedia.org/wiki/Rijndael_S-box


AES details

MixColumns operation:

linear algebra view:26666664
b0;j
b1;j
b2;j
b3;j

37777775=
266664
2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

377775
26666664
a0;j
a1;j
a2;j
a3;j

377777750� j � 3

or as polynomials over GF(28):

polynomial b(x)= b3x
3+ b2x

2+ b1x+ b0 multiplied by a(x)=3x3+x2+x+2

modulo x4+1



Alternative implementation with lookup tables

(
x0
(r+1)

; x1
(r+1)

; x2
(r+1)

; x3
(r+1)� :=T0(x0r)�T1(x5r)�T2(x10r )�T3(x15r )�K0

(r+1)

(
x4
(r+1)

; x5
(r+1)

; x6
(r+1)

; x7
(r+1)� :=T0(x4r)�T1(x9r)�T2(x14r )�T3(x3r)�K1

(r+1)

(
x8
(r+1)

; x9
(r+1)

; x10
(r+1)

; x11
(r+1)� :=T0(x8r)�T1(x13r )�T2(x2r)�T3(x7r)�K2

(r+1)

(
x12
(r+1)

; x13
(r+1)

; x14
(r+1)

; x15
(r+1)� :=T0(x12r )�T1(x1r)�T2(x6r)�T3(x11r )�K3

(r+1)



Feistel construction

− round organization so that it is �one-way� but stil invertible

− many symmetric encryption schemes follow this trick

Diagram (from Wikipedia, ignore the part tekst jawny and szyfrogram):



Feistel construction:

round i: intermediate state (Li; Ri)

encryption in round i+1:

Li+1=Ri;

Ri+1=Li
F (Ri;Ki);

decryption in the reverse order of rounds:

Ri=Li+1

Li=Ri+1
F (Li+1;Ki):



Standard Attack Methods

1. differential cryptanalysis

2. linear cryptanalysis

3. side channel leakage

4. fault cryptanalysis



Differential cryptanalysis

� S-boxes is a source of problem:

− inputs: X and X 
� (difference �)

− after adding a round subkey: X 
K; X 
�
K

− adding the round key K does not change the difference

− what is the difference after applying the S-Box?

− precomputed table:

A;A
� ! A0; A0
�1

B;B 
� ! B 0; B 0
�2

. . .

− observe output difference. If it is, say, �2; then we may assume that
X 
K =B, or X 
K =B 
� and solve for K



. . . not that easy

because we do not know the output of the S-Box

Construction of characteristics:

1 assuming that at a given place S the difference is �0 estimate proba-
bilities that in the output the difference at a certain point D is Γ

2 if the assumption about the difference at S was false, then assume that
at D the differences are totally random

in case 1 the differences are usually very small, . . . but with a large number
of pairs of inputs X , X 
� one can see some statistical bias indicating true
value of �0

Finding effective charateristics: very complex task



Linear cryptanalysis

non-linear operations (S-Boxes) approximated by linear operations

− find linear equations in input bits, output bits and key bits
that are true for more than 50% of cases

− move keybits to one side and other bits to the other side -- thus get
an expression for keybits

− advantage should be statistically observable



Toy Example

i17
 i64
 k23= o22
 1 that is true with probability 0.50000123483029

yields an expression:

k23= o22
 1
 i17
 i64

that is more likely to be true than false

gather statistics, after some number of samples there will be a strong bias
towards the true value



in practice we have to combine the expressions from all rounds



Side channel leakage

leakage via operations executed.

Power analysis:

� executing x := x
 k means swapping the bit x if k= 1 and no change
otherwise

� changing the state of a 1-bit memory costs more energy than keeping the
old value

so observe that power consumption to learn k

problems in practice:

i. noise

ii. sampling power traces

iii. finding the right moment



Fault attacks

1. encrypt M with (hidden) key K

2. encrypt M with K again, but with a laser set one bit register A to 1

3. compare the results. If unequal, then originally A contained a 0

example attack point:

an input bit XOR-ed with the key bit during the last round of AES



Encryption modes for block encryption schemes

− what if the plaintext is not a single block as described for Enc?

− needed: encryption modes that enable to encrypt a file of any length

Padding:

padd the plaintext so that it can be divided to some number of full blocks:

i.e. 128 �n for AES with 128 bit blocks

padding must be reversible

(e.g. the last byte in the block must say how many bits have been added)



Initial vector

− many modes require IV � the initial vector

− thumb rule: never repeat the same IV with the same key

− use for instance: current time + counter value

− IV transmitted in clear!



Electronic Codebook (ECB)

� Ci=EncK(Pi)

� advantages:

− simple

− modification of a single block of plaintext) modification of one block
of ciphertext

� deadly threats:

− if Pi=Pj then Ci=Cj:This leaks a lot of information!



Cipher Block Chaining (CBC)

encryption:

Ci+1=EncK(Ci
Pi+1);

C0= IV

decryption:

Pi+1=DecK(Ci+1)
Ci

advantages:

− Pi=Pj does not imply that Ci=Cj

− Ci depends on P1; : : : ; Pi

− manipulation on one ciphertext block destroys all remaining plaintext blocks

disadvantages:

− replacing a single plaintext block requires re-encryption starting at this block

(think about disk encryption!)



Cipher Feedback mode (CFB)

Encryption:

C0= IV

Ci+1=EncK(Ci)
Pi+1

decryption:

Pi+1=Ci+1
DecK(Ci)

Advantages:

− Ci depends on all P1; : : : :; Pi

− some advantage with encryption rate if Pi's come irregularly



Counter mode (CTR)

encryption

Yi=EncK(IV+ f(i)), where f is some counter function

Ci=Yi
Pi
decryption

Yi=EncK(IV+ f(i)),

Pi=Yi
Ci

(dis)advantages:

− in order to replace Pi by Pi0 it suffices to compute

Ci :=Ci
 (Pi
Pi0)
− . . . so it is better to use authenticated CTR mode

(ps: use CCM and not GCM! if you need explanation enroll to Security&
Cryptography Master program)



Authenticated block encryption mode

change the encryption scheme so that:

� a manipulation of a ciphertext results in an invalid ciphertext with very high
probability

AES+ CBC

a change in one block results in changes in two (unpredictable) changes in two
consecutive plaintext blocks

(recall that Pi+1=DecK(Ci+1)
Ci)

! usually after such manipulation we get 2 blocks of random nonsense

! . . . but if the plaintext was a random string, then one cannot detect the
manipulation



Format Preserving Encryption

� standard block ciphers have certain minimal length: blocksize=128, . . .

� encrypting n-bit plaintext to n-bit ciphertexts is not a problem if n �
blocksize

� the challenge is: how to convert k-bit strings into k-bit ciphertexts for small
k?

− application: encrypting credit card number in a record of the same size
in a database



Challenges:

i scaling down constructions such as AES is not a good idea: their security
argument depend heavily on the necessary block size

ii if an attack requires 2blocksize/2 steps, then it is ok for AES (264 steps is a
huge number) while for blocksize= 24, making 212 steps is a negligible
effort



Solution ideas:

idea 1: m bit plaintext X, n-bit block cipher Enc with key K

i. C := 0n−mjjX

ii. C :=EncK(C)

iii. if C starts with n−m zeroes, then output Cafter truncating these zeroes,
else goto ii

Decryption (obvious)

disadvantage: encryption and decryption times are random variables, com-
putationally intensive



Feistel constructions

the orange circle stands for, say AES for input padded with m zeroes, while in the
output m bits are truncated



NIST Standards

FF1, FF3, (FF2 broken during the standardization process)

− number of rounds below what suggested by cryptographers

− security broken if you may query some number of (plaintext, ciphertext)
pairs

− some design decisions not compliant with the state-of -the-art

nevertheless offered and used


