CRYPTOGRAPHY LECTURE, 2022
Computer Science and Algorithmics, PWr

Mirostaw Kutyfowski
Asymmetric Encryption Schemes

Asymmetric encryption
— Alice holds a pair of keys:
— a private key SK (kept secret by Alice)

— a public key PK (available to some other people)

Asymmetric encryption

Goal: Bob holding PK can send a message M to Alice so that only M can
read it

— (C:=Encpk(M)

— (' sent to Alice

— Alice calculates: M :=Decgk(C)

Conditions:

— without SK it should be infeasible to learn anything about M
— 5o in particular:

— infeasible to derive SK from PK

— Enc must be a randomized function(otherwise test whether a given C
fulfils the equality Encpi(U) = C for a candidate U for a plaintext)

Security - formal requirement

— generate a pair of keys (PK, SK) according to the scheme

— choose plaintexts mg, m;

— then for any efficient algorithm A in the following game the adversary has
a negligible advantage

i choose b {0,1} at random
i present Encpk(my), PK,mgm; to A

i A outputs b’ and wins if b’ =0

Attention:

the length of the plaintext cannot be fully hidden,

so in the above definition Enc encrypt the messages of a fixed size

Exercise:
you may consider a game with two sequences of messages:
5, M3 & and mi, m? ¥ and chall ith the ciph
mg, mg, ..., mg and my, mi, ..., m5 and challenge A with the ciphertexts
1 2 k
Encpk(my), Encpx(my), . .., Enc(my)

and ask to guess b

It turns out that this definition is equivalent to the previous one

ElGamal public key encryption

based on a group where DDH assumption holds, e.g.

— take Z, for a large prime number p,

— Zjp has order p —1=2-¢q, choose p so that ¢ is prime

— find g€ Z, of order ¢ (take gy at random, set g = g5 mod p provided
that g # 1

Key generation:

I. choose < ¢ at random

ii. put SK=2 and PK = g*

ElGamal public key encryption
Encryption of m

I. choose £ at random

i. C:=(PKF-m, g")
Decryption of C = (A, B)

calculate m := A/ BK

A PKF-m PKF-m PKF.-m

BSK — (gh)SK (SK)k PKFK = m

correctness:

Security of EIGamal
indistinguishable distributions:

— Ho={(9" g", g*"-myg): x,r —random}
— Hi={(9",g",9° mp):x,r, z—random}
— Hy={(9",¢",9%):x,r, z—random}

— H3;={(9",¢g",9°-mq1):x,r, z—random}

— Hy={(9%, g",¢g*"-mq): x,r —random}

ElGamal properties

— reencryption: given (A, B) = (PK"-m, g*) one can get another cipher-
text of the same m:

(A-PK°,B-g°) (=(PK*-m, g**?))

— homomorphic: (PK*-m, ¢*)- (PK* -m’, ¢*) equals a ciphertext of
m-m':

(PRS- ('), g

— manipulating plaintext of (A, B) = (PK"*-m, ¢*):

(A-u, B) is a ciphertext of m - u

RSA encryption

— based on RSA numbers: n=1p- ¢, where p and ¢ are large prime numbers
— factorization is generally a hard problem if prime factors are large

— take Z) - the numbers invertible modulo n (that is, coprime with p and q)

— Zyis a group with multiplication modn, with ¢(n)=(p—1)-(¢—1) elements

RSA specification

i. find different large primes p, ¢ of bitlength 1024 (or 2048, ...)
(how to do it??)
preferably p and ¢ are strong: (p—1)/2 and (¢ — 1) /2 are prime
. n:=p-q
iii. take e coprime with (p —1)(qg —1)

iv. compute d such that e-d=1mod (p—1)(¢q—1) (Extended Euclidean Algo-
rithm)

Keys:
— SK=d
— PK=(n,e)

Encryption of m

1. mp:=encode(m) - get a number mo<n (from binary representation via some padding)
2. Enc,, (m)=m§modn
Decryption of c
1. compute mg:=c% modn
2. m:=encode ™! (my)
Magic
= (mg)?=mg 4= m(1)+i~(p—1)(q—1) —my- mé(p—l)(q—l) = my
the last equality follows from the fact that
— Zp has (p—1)(q— 1) elements

— if a group has k elements, then a” =1 for each element a from the group (Euler's
Theorem)

RSA Assumption
computing the eth root of ¢ is infeasible

(unless you know d such that e-d=1mod (p —1)(q¢—1))

Observations
I. if you have d then you may compute p and ¢:
a.eccd—1=i-(p—1)(¢—1)=i-(n+1—-(p+q))
b. you may easily estimate ¢ and later find z=p+ ¢
c. solve equation n=x-(z — x)
li. so two users must not share the same n
iii. breaking an RSA ciphertext is not necessarily via finding d

(there is a similar scheme - Rabin - where it is equivalent)

Properties of RSA

I u-v°=(u-v)°mod n so depending on the encoding it might be the case
that Enc,, 4(u) - Enc, 4(v) =Enc, 4(u-v)

ii. due to the size of n the ciphertexts are quite long (e.g. 2K)

lil. computation intensive on long integers (however exponentiation imple-
mented in a clever way)

Hybrid encryption
dividing into block and encrypting each block with RSA would be tedious
Hybrid encryption of a long file D:
I. choose a symmetric key K at random
ii. C:=RSA —Enc, 4(K)
iii. S:=AES — Encg(D)
iv. output (C', 9)

decryption in the reverse order

Malicious Application - Ransomware:

— ransomware program R installed on a computer
— R runs:

| applies a one way-function F’ to compute a symmetric key K, namely K = F'(D) where
D is the data to be encrypted (in practice, F is a hash function)

i encrypts D on the disk: replaces D with Encg (D) (symmetric scheme) and attaches
R=RSA — Encpk(K), where PK is the public key

lii leaves a message: “pay ... bitcoins to get the decryption key”
— the victim pays ransom,

— the criminal holding the secret key corresponding to PK decrypts R to get K and sends to
the victim

— the victim decrypts the ciphertext Encg (D)

Pallier scheme

Properties:
— homomorphic scheme: Encpk(m) - Encpk(m’) = Encpx(m +m/)
— based on RSA modulus n and computations modulo 7
— basic observation: (1+n)"=1+m-+n?...)=1+m-n modn?
— secret information: factors p, ¢ of n=p-q
Encryption of m:
let g=n+1
I. choose <n at random

ii. c:= ¢™ - r" mod n?

Pallier decryption

Decryption keys:
— A=lem(p—1,q—1),
— p=L(g*modn?)~'modn, where L(x) = x;1

Decryption

m:= L(c*modn?) -y modn
Why it works?

= <gm . T.n))\ — gm-)\ . T,n-)\ mod n2

order of the group is ¢(n?) =p(p —1)-q(q — 1), but from the structure of the
group it follows that the order of each element divides 72 \ so 7"* =1 mod n?

=g =1+n-m-\modn?

L(c*modn?)=m-Amodn

Cramer-Shoup encryption

resistant to manipulations,

the same group as for ElGamal, cyclic group with ¢ elements, DDH hard, ¢, g-
are random generators

key generation:
I. choose 1, T3, Y1, 12, 2 < q independently at random
ii. SK= (1, 22, Y1, y2, 2)

iii. c:= g7" gQ,d—g gg,h = g1

iv. PK=(c,d, h) together with parameters ¢, 9o

Cramer-Shoup Encryption of m
I. choose £ at random

1. Uq ::g’f, uQ::glf

iii. e:=h"-m

iv. a:= H (uy, uo, €)

k gk

V. UV.=¢C

vi. output (1, ug, €,)

Cramer-Shoup Decryption of (u,us, e, v)

i. (e,uy) is in fact an ElGamal ciphertext (h*-m, gf), so m can be derived as
before

Ii. integrity check:
a. a:= H(uy, uo,e€)

L1y, L2(, Y1, Y2\r __
b. check whether w7 us*(uf'ud?)*=wv

Padding

Problems:

1. the schemes like RSA enable manipulations of the plaintext by manipulations
on a ciphertext

2. plaintexts are sometimes too short

To show: well-designed padding can solve the problem

RSA OEAP
— the concept somewhat similar to the Feistel network

— padding transformation before application of the RSA exponentiation

— all-or-nothing concept

OEAP-Optimal Asymmetric Encryption Padding

parameters:
— m is the length of the RSA modulus
— ko, k1 are fixed parameters <m

— (' and H are hash functions: output of GG has m — k bits, output of H has
]{0 bits

— input message of length m — ky — k4
padding:

i. add k; zeroes to M: MO00...0

ii. choose a random string r of length kg
ii. X :=MO00...00G(r)

iv. Yi=ro H(X)

output: X ||V

OEAP

padding:
I. add kq zeroes to M: MO00...0
ii. choose a random string r of length kg
iii. X :=M00...00G(r)
iv. Y:=r@® H(X)

Reverse operation:
Lr:=Y & H(X)
ii. calculate X & G(r)
iii. if no ky zeroes at the end then abort (manipulation detected!)

iv. otherwise truncate k; zeroes

