
CRYPTOGRAPHY LECTURE, 2022

Computer Science and Algorithmics, PWr

Mirosªaw Kutyªowski

Asymmetric Encryption Schemes

Asymmetric encryption

− Alice holds a pair of keys:

− a private key SK (kept secret by Alice)

− a public key PK (available to some other people)



Asymmetric encryption

Goal: Bob holding PK can send a message M to Alice so that only M can
read it

− C :=EncPK(M)

− C sent to Alice

− Alice calculates: M :=DecSK(C)

Conditions:

− without SK it should be infeasible to learn anything about M

− so in particular:

− infeasible to derive SK from PK

− Enc must be a randomized function(otherwise test whether a given C
fulfils the equality EncPK(U)=C for a candidate U for a plaintext)



Security - formal requirement

− generate a pair of keys (PK;SK) according to the scheme

− choose plaintexts m0;m1

− then for any efficient algorithm A in the following game the adversary has
a negligible advantage

i choose b2f0; 1g at random

ii present EncPK(mb);PK;m0;m1 to A

iii A outputs b 0 and wins if b 0= b



Attention:

the length of the plaintext cannot be fully hidden,

so in the above definition Enc encrypt the messages of a fixed size

Exercise:

you may consider a game with two sequences of messages:

m0
1;m0

2; : : : ;m0
k and m1

1;m1
2; : : : ;m1

k and challenge A with the ciphertexts

EncPK(mb
1);EncPK(mb

2); : : : ;Enc(mb
k)

and ask to guess b

It turns out that this definition is equivalent to the previous one



ElGamal public key encryption

based on a group where DDH assumption holds, e.g.

− take Zp for a large prime number p,

− Zp has order p− 1=2 � q, choose p so that q is prime

− find g 2Zp of order q (take g0 at random, set g= g0
2 mod p provided

that g=/ 1

Key generation:

i. choose x< q at random

ii. put SK=x and PK= gx



ElGamal public key encryption

Encryption of m

i. choose k at random

ii. C := (PKk �m; gk)

Decryption of C=(A;B)

calculate m :=A/BSK

correctness: A

BSK =
PKk �m
(gk)SK

=
PKk �m
(gSK)k

=
PKk �m
PKk

=m



Security of ElGamal

indistinguishable distributions:

− H0= f(gx; gr; gx�r �m0):x; r− randomg

− H1= f(gx; gr; gz �m0):x; r; z− randomg

− H2= f(gx; gr; gz):x; r; z− randomg

− H3= f(gx; gr; gz �m1):x; r; z− randomg

− H4= f(gx; gr; gx�r �m1):x; r− randomg



ElGamal properties

− reencryption: given (A;B)= (PKk �m; gk) one can get another cipher-
text of the same m:

(A �PK�; B � g�) (=(PKk+� �m; gk+�))

− homomorphic: (PKk �m; gk) � (PKk 0 �m0; gk
0
) equals a ciphertext of

m �m0:

(PKk+k 0 � (m �m0); gk+k
0
)

− manipulating plaintext of (A;B)= (PKk �m; gk):

(A �u;B) is a ciphertext of m �u



RSA encryption

− based on RSA numbers: n= p � q, where p and q are large prime numbers

− factorization is generally a hard problem if prime factors are large

− take Zn
� - the numbers invertible modulo n (that is, coprime with p and q)

− Zn
� is a group with multiplication modn, with �(n)=(p−1) �(q−1) elements



RSA specification

i. find different large primes p, q of bitlength 1024 (or 2048, . . . )

(how to do it??)

preferably p and q are strong: (p− 1)/2 and (q− 1)/2 are prime

ii. n := p � q

iii. take e coprime with (p− 1)(q− 1)

iv. compute d such that e � d=1mod (p− 1)(q − 1) (Extended Euclidean Algo-
rithm)

Keys:

− SK= d

− PK=(n; e)



Encryption of m

1. m0 :=encode(m) - get a numberm0<n (from binary representation via some padding)

2. Encn;e(m)=m0
e modn

Decryption of c

1. compute m0 := cdmodn

2. m := encode−1(m0)

Magic

cd=(m0
e)d=m0

e�d=m0
1+i�(p−1)(q−1)=m0 �m0

i(p−1)(q−1)=m0

the last equality follows from the fact that

− Zn
� has (p− 1)(q− 1) elements

− if a group has k elements, then ak=1 for each element a from the group (Euler's
Theorem)



RSA Assumption

computing the eth root of c is infeasible

(unless you know d such that e � d=1mod (p− 1)(q− 1))

Observations

i. if you have d then you may compute p and q:

a. e � d− 1= i � (p− 1)(q− 1)= i � (n+1− (p+ q))

b. you may easily estimate i and later find z= p+ q

c. solve equation n=x � (z−x)

ii. so two users must not share the same n

iii. breaking an RSA ciphertext is not necessarily via finding d

(there is a similar scheme - Rabin - where it is equivalent)



Properties of RSA

i. ue � ve=(u � v)emod n so depending on the encoding it might be the case
that Encn;d(u) �Encn;d(v)=Encn;d(u � v)

ii. due to the size of n the ciphertexts are quite long (e.g. 2K)

iii. computation intensive on long integers (however exponentiation imple-
mented in a clever way)



Hybrid encryption

dividing into block and encrypting each block with RSA would be tedious

Hybrid encryption of a long file D:

i. choose a symmetric key K at random

ii. C :=RSA−Encn;d(K)

iii. S :=AES−EncK(D)

iv. output (C; S)

decryption in the reverse order



Malicious Application - Ransomware:

− ransomware program R installed on a computer

− R runs:

i applies a one way-function F to compute a symmetric key K, namely K=F (D) where
D is the data to be encrypted (in practice, F is a hash function)

ii encrypts D on the disk: replaces D with EncK(D) (symmetric scheme) and attaches
R=RSA−EncPK(K), where PK is the public key

iii leaves a message: �pay . . . bitcoins to get the decryption key�

− the victim pays ransom,

− the criminal holding the secret key corresponding to PK decrypts R to get K and sends to
the victim

− the victim decrypts the ciphertext EncK(D)



Pallier scheme

Properties:

− homomorphic scheme: EncPK(m) �EncPK(m0)=EncPK(m+m0)

− based on RSA modulus n and computations modulo n2

− basic observation: (1+n)m=1+m+n2(: : :)= 1+m �n modn2

− secret information: factors p, q of n= p � q

Encryption of m:

let g=n+1

i. choose r <n at random

ii. c := gm � rnmodn2



Pallier decryption

Decryption keys:

− �= lcm (p− 1; q− 1),
− �=L(g�modn2)−1modn, where L(x)= x− 1

n

Decryption

m :=L(c�modn2) � �modn

Why it works?

c�=(gm � rn)�= gm�� � rn��modn2

order of the group is �(n2) = p(p− 1) � q(q− 1), but from the structure of the
group it follows that the order of each element divides n �� so rn��=1modn2

c�= gm��=1+n �m ��modn2

L(c�modn2)=m ��modn



Cramer-Shoup encryption

resistant to manipulations,

the same group as for ElGamal, cyclic group with q elements, DDH hard, g1; g2
are random generators

key generation:

i. choose x1; x2; y1; y2; z < q independently at random

ii. SK=(x1; x2; y1; y2; z)

iii. c := g1
x1 � g2x2, d := g1

y1 � g2
y2, h := g1

z

iv. PK=(c; d; h) together with parameters g1; g2



Cramer-Shoup Encryption of m

i. choose k at random

ii. u1 := g1
k, u2 := g2

k

iii. e :=hk �m

iv. � :=H(u1; u2; e)

v. v := ckdk��

vi. output (u1; u2; e; v)



Cramer-Shoup Decryption of (u1; u2; e; v)

i. (e; u1) is in fact an ElGamal ciphertext (hk �m; g1k), so m can be derived as
before

ii. integrity check:

a. � :=H(u1; u2; e)

b. check whether u1
x1u2

x2(u1
y1u2

y2)�= v



Padding

Problems:

1. the schemes like RSA enable manipulations of the plaintext by manipulations
on a ciphertext

2. plaintexts are sometimes too short

To show: well-designed padding can solve the problem

RSA OEAP

− the concept somewhat similar to the Feistel network

− padding transformation before application of the RSA exponentiation

− all-or-nothing concept



OEAP-Optimal Asymmetric Encryption Padding

parameters:

− m is the length of the RSA modulus

− k0; k1 are fixed parameters <m

− G and H are hash functions: output of G has m− k0 bits, output of H has
k0 bits

− input message of length m− k0− k1
padding:

i. add k1 zeroes to M : M00: : :0

ii. choose a random string r of length k0

iii. X :=M00: : :0�G(r)

iv. Y := r�H(X)

output: XkY



OEAP

padding:

i. add k1 zeroes to M : M00: : :0

ii. choose a random string r of length k0

iii. X :=M00: : :0�G(r)

iv. Y := r�H(X)

Reverse operation:

i. r :=Y �H(X)

ii. calculate X �G(r)

iii. if no k1 zeroes at the end then abort (manipulation detected!)

iv. otherwise truncate k1 zeroes


