CRYPTOGRAPHY LECTURE, 2022

Computer Science and Algorithmics, PWr

Mirosław Kutyłowski

Asymmetric Encryption Schemes

Asymmetric encryption

- Alice holds a pair of keys:
 - a private key SK (kept secret by Alice)
 - a public key PK (available to some other people)

Asymmetric encryption

Goal: Bob holding PK can send a message M to Alice so that only M can read it

- $C := \operatorname{Enc}_{\operatorname{PK}}(M)$
- C sent to Alice
- Alice calculates: $M := Dec_{SK}(C)$

Conditions:

- -~ without ${\rm SK}$ it should be infeasible to learn anything about M
- so in particular:
 - -~ infeasible to derive $\rm SK$ from $\rm PK$
 - Enc must be a randomized function(otherwise test whether a given C fulfils the equality $Enc_{PK}(U) = C$ for a candidate U for a plaintext)

Security - formal requirement

- $-\,$ generate a pair of keys $(\mathrm{PK},\mathrm{SK})\,\text{according}$ to the scheme
- choose plaintexts m_0, m_1
- $-\,$ then for any efficient algorithm ${\cal A}$ in the following game the adversary has a negligible advantage
 - i choose $b \in \{0, 1\}$ at random
 - ii present $Enc_{PK}(m_b), PK, m_0, m_1$ to \mathcal{A}
 - iii \mathcal{A} outputs b' and wins if b' = b

Attention:

the length of the plaintext cannot be fully hidden,

so in the above definition Enc encrypt the messages of a fixed size

Exercise:

you may consider a game with two sequences of messages: $m_0^1, m_0^2, \ldots, m_0^k$ and $m_1^1, m_1^2, \ldots, m_1^k$ and challenge \mathcal{A} with the ciphertexts $\operatorname{Enc}_{PK}(m_b^1), \operatorname{Enc}_{PK}(m_b^2), \ldots, \operatorname{Enc}(m_b^k)$

and ask to guess b

It turns out that this definition is equivalent to the previous one

ElGamal public key encryption

based on a group where DDH assumption holds, e.g.

- take \mathbb{Z}_p for a large prime number p,
- \mathbb{Z}_p has order $p 1 = 2 \cdot q$, choose p so that q is prime
- find $g \in \mathbb{Z}_p$ of order q (take g_0 at random, set $g = g_0^2 \mod p$ provided that $g \neq 1$

Key generation:

- i. choose x < q at random
- ii. put SK = x and $PK = g^x$

ElGamal public key encryption

Encryption of m

- i. choose \boldsymbol{k} at random
- ii. $C := (\mathbf{PK}^k \cdot m, g^k)$

Decryption of C = (A, B)

calculate $m := A / B^{\rm SK}$

correctness:
$$\frac{A}{B^{SK}} = \frac{PK^k \cdot m}{(g^k)^{SK}} = \frac{PK^k \cdot m}{(g^{SK})^k} = \frac{PK^k \cdot m}{PK^k} = m$$

Security of ElGamal

indistinguishable distributions:

-
$$H_0 = \{(g^x, g^r, g^{x \cdot r} \cdot m_0) : x, r - random\}$$

-
$$H_1 = \{(g^x, g^r, g^z \cdot m_0) : x, r, z - random\}$$

-
$$H_2 = \{(g^x, g^r, g^z): x, r, z - random\}$$

-
$$H_3 = \{(g^x, g^r, g^z \cdot m_1) : x, r, z - random\}$$

-
$$H_4 = \{(g^x, g^r, g^{x \cdot r} \cdot m_1) : x, r - random\}$$

ElGamal properties

- **reencryption:** given $(A, B) = (PK^k \cdot m, g^k)$ one can get another ciphertext of the same m:

$$(A \cdot \mathrm{PK}^{\delta}, B \cdot g^{\delta}) \quad (=(\mathrm{PK}^{k+\delta} \cdot m, g^{k+\delta}))$$

- **homomorphic:** $(PK^k \cdot m, g^k) \cdot (PK^{k'} \cdot m', g^{k'})$ equals a ciphertext of $m \cdot m'$:

$$(\mathrm{PK}^{k+k'} \cdot (m \cdot m'), g^{k+k'})$$

- manipulating plaintext of $(A, B) = (PK^k \cdot m, g^k)$:

 $(A \cdot u, B)$ is a ciphertext of $m \cdot u$

RSA encryption

- based on RSA numbers: $n = p \cdot q$, where p and q are large prime numbers
- factorization is generally a hard problem if prime factors are large
- take \mathbb{Z}_n^* the numbers invertible modulo n (that is, coprime with p and q)
- $~ \mathbb{Z}_n^*$ is a group with multiplication \bmod{n} , with $\phi(n) \!=\! (p-1) \cdot (q-1)$ elements

RSA specification

i. find different large primes p, q of bitlength 1024 (or 2048, ...) (how to do it??)

preferably p and $q\,$ are strong: (p-1)/2 and (q-1)/2 are prime

ii. $n := p \cdot q$

- iii. take e coprime with (p-1)(q-1)
- iv. compute d such that $e \cdot d = 1 \ \mathrm{mod} \ (p-1)(q-1)$ (Extended Euclidean Algorithm)

Keys:

- SK = d
- $\operatorname{PK} = (n, e)$

Encryption of m

- 1. $m_0:=$ encode(m) get a number $m_0 < n$ (from binary representation via some padding)
- 2. $\operatorname{Enc}_{n,e}(m) = m_0^e \mod n$

Decryption of \boldsymbol{c}

- 1. compute $m_0 := c^d \mod n$
- 2. $m := \text{encode}^{-1}(m_0)$

Magic

$$c^{d} = (m_{0}^{e})^{d} = m_{0}^{e \cdot d} = m_{0}^{1+i \cdot (p-1)(q-1)} = m_{0} \cdot m_{0}^{i(p-1)(q-1)} = m_{0}$$

the last equality follows from the fact that

- \mathbb{Z}_n^* has (p-1)(q-1) elements
- if a group has k elements, then $a^k = 1$ for each element a from the group (Euler's Theorem)

RSA Assumption

computing the eth root of c is infeasible

(unless you know d such that $e \cdot d = 1 \mod (p-1)(q-1)$)

Observations

i. if you have d then you may compute $p \mbox{ and } q$:

a.
$$e \cdot d - 1 = i \cdot (p - 1)(q - 1) = i \cdot (n + 1 - (p + q))$$

b. you may easily estimate i and later find $z \,{=}\, p \,{+}\, q$

c. solve equation $n = x \cdot (z - x)$

ii. so two users must not share the same n

iii. breaking an RSA ciphertext is not necessarily via finding d (there is a similar scheme - Rabin - where it is equivalent)

Properties of RSA

- i. $u^e \cdot v^e = (u \cdot v)^e \mod n$ so depending on the encoding it might be the case that $\operatorname{Enc}_{n,d}(u) \cdot \operatorname{Enc}_{n,d}(v) = \operatorname{Enc}_{n,d}(u \cdot v)$
- ii. due to the size of n the ciphertexts are quite long (e.g. 2K)
- iii. computation intensive on long integers (however exponentiation implemented in a clever way)

Hybrid encryption

dividing into block and encrypting each block with RSA would be tedious

Hybrid encryption of a long file D:

- i. choose a symmetric key \boldsymbol{K} at random
- ii. $C := \operatorname{RSA} \operatorname{Enc}_{n,d}(K)$
- iii. $S := AES Enc_K(D)$
- iv. output (C,S)

decryption in the reverse order

Malicious Application - Ransomware:

- ransomware program R installed on a computer
- R runs:
 - i applies a one way-function F to compute a symmetric key K, namely K = F(D) where D is the data to be encrypted (in practice, F is a hash function)
 - ii encrypts D on the disk: replaces D with $Enc_K(D)$ (symmetric scheme) and attaches $R = RSA Enc_{PK}(K)$, where PK is the public key

iii leaves a message: "pay ... bitcoins to get the decryption key"

- the victim pays ransom,
- the criminal holding the secret key corresponding to PK decrypts R to get K and sends to the victim
- the victim decrypts the ciphertext $Enc_K(D)$

Pallier scheme

Properties:

- homomorphic scheme: $\operatorname{Enc}_{PK}(m) \cdot \operatorname{Enc}_{PK}(m') = \operatorname{Enc}_{PK}(m+m')$
- $-\,$ based on RSA modulus n and computations modulo n^2
- basic observation: $(1+n)^m = 1 + m + n^2(\ldots) = 1 + m \cdot n \mod n^2$
- secret information: factors p, q of $n=p\cdot q$

Encryption of *m*:

let g = n+1

i. choose r < n at random

ii. $c := g^m \cdot r^n \mod n^2$

Pallier decryption

Decryption keys:

-
$$\lambda = \text{lcm}(p-1, q-1)$$
,
- $\mu = L(g^{\lambda} \mod n^2)^{-1} \mod n$, where $L(x) = \frac{x-1}{n}$
Decryption

$$m := L(c^{\lambda} \operatorname{mod} n^2) \cdot \mu \operatorname{mod} n$$

Why it works?

$$c^{\lambda} \!=\! (g^m \cdot r^n)^{\lambda} \!=\! g^{m \cdot \lambda} \cdot r^{n \cdot \lambda} \bmod n^2$$

order of the group is $\phi(n^2) = p(p-1) \cdot q(q-1)$, but from the structure of the group it follows that the order of each element divides $n \cdot \lambda$ so $r^{n \cdot \lambda} = 1 \mod n^2$

$$c^{\lambda} = g^{m \cdot \lambda} = 1 + n \cdot m \cdot \lambda \bmod n^2$$

 $L(c^{\lambda} \operatorname{mod} n^2) = m \cdot \lambda \operatorname{mod} n$

Cramer-Shoup encryption

resistant to manipulations,

the same group as for ElGamal, cyclic group with q elements, DDH hard, g_1, g_2 are random generators

key generation:

i. choose $x_1, x_2, y_1, y_2, z < q$ independently at random

ii. SK =
$$(x_1, x_2, y_1, y_2, z)$$

iii. $c := g_1^{x_1} \cdot g_2^{x_2}$, $d := g_1^{y_1} \cdot g_2^{y_2}$, $h := g_1^z$

iv. PK = (c, d, h) together with parameters g_1, g_2

Cramer-Shoup Encryption of \boldsymbol{m}

- i. choose k at random
- ii. $u_1 := g_1^k$, $u_2 := g_2^k$
- iii. $e := h^k \cdot m$
- iv. $\alpha := H(u_1, u_2, e)$
- v. $v := c^k d^{k \cdot \alpha}$
- vi. output (u_1, u_2, e, v)

Cramer-Shoup Decryption of (u_1, u_2, e, v)

- i. (e, u_1) is in fact an ElGamal ciphertext $(h^k \cdot m, g_1^k)$, so m can be derived as before
- ii. integrity check:
 - a. $\alpha := H(u_1, u_2, e)$
 - b. check whether $u_1^{x_1}u_2^{x_2}(u_1^{y_1}u_2^{y_2})^{\alpha} = v$

Padding

Problems:

1. the schemes like RSA enable manipulations of the plaintext by manipulations on a ciphertext

2. plaintexts are sometimes too short

To show: well-designed padding can solve the problem

RSA OEAP

- the concept somewhat similar to the Feistel network
- padding transformation before application of the RSA exponentiation
- all-or-nothing concept

OEAP-Optimal Asymmetric Encryption Padding

parameters:

- m is the length of the RSA modulus
- k_0, k_1 are fixed parameters < m
- G and H are hash functions: output of G has $m k_0$ bits, output of H has k_0 bits
- input message of length $m k_0 k_1$

padding:

- i. add k_1 zeroes to M: M00...0
- ii. choose a random string r of length k_0

```
iii. X := M00 \dots 0 \oplus G(r)
```

iv. $Y := r \oplus H(X)$

output: X || Y

OEAP

padding:

- i. add k_1 zeroes to M: M00...0
- ii. choose a random string r of length $k_{\rm 0}$
- iii. $X := M00 \dots 0 \oplus G(r)$
- $\text{iv. } Y := r \oplus H(X)$

Reverse operation:

- i. $r := Y \oplus H(X)$
- ii. calculate $X \oplus G(r)$
- iii. if no k_1 zeroes at the end then abort (manipulation detected!)
- iv. otherwise truncate k_1 zeroes