
CRYPTOGRAPHY LECTURE, 2022

Computer Science and Algorithmics, PWr

Mirosªaw Kutyªowski

Cryptographic Hash Functions

Goal

− creating a fingerprint of a message M of a fixed size

− the fingerprint of M should not leak in practice any information on M

− Message Authentication Code MAC(Key;M)

Applications

coin tossing over internet:

i. Alice chooses K and bit a

ii. Alice calculates: c :=Hash(K; a) and sends c to Bob

iii. Bob chooses bit b and sends it to Alice

iv. Alice computes r := a
 b and responds with K

v. Bob checks that c :=Hash(K; a) and computes r := a
 b

Applications

authenticating transmission over a second channel:

i. server A sends to server B a ciphertext C of a large dataD (e.g. RSA+CBC
AES hybrid mode)

ii. server A computes h :=Hash(Key;D) where Key is shared by A and B

iii. the operator of A calls the operator of B and dictates h

iv. server B checks whether h corresponds to the message received by recom-
puting it

Applications

RSA digital signature:

signature creation for message M and secret key e:

s := (Hash(M))e modn

signature verification for messageM , public key (n;d) and signature s:

sd=Hash(M)mod n ?

properties needed:

i. Hash maps to numbers in the range (1; n− 1)

ii. for a given M , it is infeasible to find any M 0 such that Hash(M) =
Hash(M 0)

Solution with DLP (not very practical but provably secure)

Setup: random generators g and h of a cyclic group G such that logg(h) is
unknown

Hashing H: f1; : : : ; q− 1g2!G

H(x0; x1)= gx0 �hx1

Properties:

− the size of H(x0; x1) is roughly the half of the size of the arguments

− finding a conflict, i.e. (x00 ; x10)=/ (x0; x1)

H(x0; x1)=H(x0
0 ; x1

0)

is infeasible, as it would lead to breaking the DLP problem:

H(x0; x1)=H(x0
0 ; x1

0) means gx0 �hx1= gx0
0 �hx10, that is

h= g(x0
0−x0)/(x1−x10)

Desired properties

one-way function:

given y it is infeasible to find any x such that y=Hash(x)

necessary for using as a MAC for plaintext

Desired properties

second pre-image resistance:

given x and y=Hash(x) it is infeasible to find any x0 such that y=Hash(x0)

necessary for commitment schemes:

− Alice commits to m when she presents y=Hash(m; r) for a random r

− Alice can open commitment y by revealing m and r

Desired properties

conflict freeness:

it is infeasible to find any two arguments x=/ x0, such thatHash(x)=Hash(x0)

conflicts do exists due to Pigeon Hole Principle

if Hash: f0; 1gm!f0; 1gn and n <m, then for a random x there are on
average 2m−n strings x0 such that Hash(x)=Hash(x0)

Dependencies:

conflict free) 2nd preimage resistant

: 2nd preimage resistant) : conflict free

2nd preimage resistant) one-way

: one-way) : 2nd preimage resistant

Attacks complexity and consequences

� functions like MD5 broken (2nd preimage broken in practice)

� SHA-1 conflict freeness broken, but 2nd preimage still not

� SHA-1: chosen prefix attack: one can takeD=/ D 0 and find Z;Z 0 such that

SHA-1(D jjZ)= SHA-1(D 0jjZ 0) (the cost is still very high)

� until 2004 the people belived that SHA-1 is secure, authorities issued rec-
ommendations . . .

� . . . but prof. Xiaoyun Wang and her team did not believe/knew about it
and broke MD-4 and consequently MD-5 and SHA-1

NIST competition for SHA-3

process:

� open call in 2009, requirements explicitly stated

� many candidates, final decision in 2012 after rounds of open evaluation
and narrowing the set of candidates

� almost transparent process

� hard work done by volunteers

Different approach (Russia): designed in secrecy, later call for attacks

� GOST (weaknesses found, algorithm withdrawn)

� Streebog (Ñòðèáîã) � not broken but serious design weaknesses found

Block concept

input: a block of a fixed size r (e.g. r= 1088)

output: a block of a fixed size d (e.g. d= 256) where d< r

Output block size and birthday paradox:

attack:

i. choose 2d/2 arguments at random

ii. compute hash values for them

iii. find a conflict

it suceeds with a fair probability due to the birthday paradox

Corollary: hash functions with output size 80 bits make no sense

How to hash long messages?

Keccak: sponge construction (phase 1: absorb many blocks, phase 2:
squeezing)

invertible

Merkle-Damgård construction:

(picture: Coron et al)

not invertible

Keccak

picture: Yakut, Tuncer, Ozer

Function f :

only XOR, AND, NOT operations

data viewed as a 3-dimentional structure: 5x5xw

mixing in 3 dimensions (instead of 2 as for AES)

rounds

j (theta)

a[i][j][k] a[i][j][k]�parity(a[0...4][j−1][k])�parity(a[0...4][j+1][k−
1])

r (rho)

0� t <24, a[i][j][k] a[i][j][k− (t+1)(t+2)/2],

where

�
i
j

�
=

�
3 2
1 0

�
t
�
0
1

�
p (pi)

a[3i+2j][i] a[i][j]

q (chi)

a[i][j][k] a[i][j][k]�(:a[i][j+1][k]& a[i][j+2][k])

i (iota)

Exclusive-or a round constant into one word of the state.

HMAC

message authentication code based on Hash function and a secret key

HMAC computation for message M and key K:

h :=HMACK(M)=Hash((K � opad)kHash((K � ipad)kM))

upon receiving M and h, the HMAC of M is recomputed and compared with h

Hash mode for encryption function

idea: instead of creating separate functions for computing hashes, reuse the
existing strong encryption functions

! important for embedded devices: less code/hardware to be installed: e.g. AES
instead of hash and symmetric encryption

! encryption is also a pseudorandom function

Be careful: e.g. Hash(M1;M2) defined as EncM1(M2) would be silly:

i take H :=EncM1(M2)

ii choose Z at random and Y :=DecZ(H)

iii . . . and we have a collision on (M1;M2) and (Z; Y)

! hardware implementation of AES might be easier than of a hash function (e.g.
the number of gates required)

!

AES hash mode

see: on the exercises list

� one of the NIST criteria for AES standard: reuse of encryption for hashing

