CRYPTOGRAPHY LECTURE, 2022
Computer Science and Algorithmics, PWr

Mirostaw Kutyfowski

Cryptographic Hash Functions

Goal
— creating a fingerprint of a message M of a fixed size

— the fingerprint of M should not leak in practice any information on M

— Message Authentication Code MAC(Key, M)

Applications
coin tossing over internet:
i. Alice chooses K and bit a
ii. Alice calculates: ¢:=Hash(K , a) and sends ¢ to Bob
iii. Bob chooses bit b and sends it to Alice
iv. Alice computes r:=a ® b and responds with K

v. Bob checks that ¢:=Hash(K,a) and computes r:=a ® b

Applications
authenticating transmission over a second channel:

I. server A sends to server B a ciphertext C' of a large data D (e.g. RSA+CBC
AES hybrid mode)

ii. server A computes h:= Hash(Key, D) where Key is shared by A and B
lii. the operator of A calls the operator of B and dictates h

iv. server B checks whether h corresponds to the message received by recom-
puting it

Applications
RSA digital signature:

signature creation for message M and secret key e:
s:= (Hash(M))® modn
signature verification for message M, public key (n,d) and signature s:

s?’=Hash(M)mod n 7

properties needed:

i. Hash maps to numbers in the range (1,n —1)

ii. for a given M, it is infeasible to find any M’ such that Hash(M) =
Hash (M)

Solution with DLP (not very practical but provably secure)

Setup: random generators g and h of a cyclic group G such that log,(h) is
unknown

Hashing H:{1,...,q—1}* =G

H(xo, x1) = g™ - h™
Properties:

— the size of H(xq, 1) is roughly the half of the size of the arguments

— finding a conflict, i.e. (g, x1) # (o, 1)
H(ZE(): :El) — H(I(l)a in)

is infeasible, as it would lead to breaking the DLP problem:

H (x0, 1) = H(x), 27) means ¢” - h" = ¢*0. h*1, that is

h= geb—z0)/(@i-=0)

Desired properties
one-way function:

given vy it is infeasible to find any x such that y = Hash(z)

necessary for using as a MAC for plaintext

Desired properties
second pre-image resistance:

given xand y=Hash(x) it is infeasible to find any 2’ such that y = Hash(z')

necessary for commitment schemes:

— Alice commits to m when she presents y = Hash(m,) for a random r

— Alice can open commitment vy by revealing m and r

Desired properties
conflict freeness:

it is infeasible to find any two arguments = = 2/, such that Hash(z) =Hash(z’)

conflicts do exists due to Pigeon Hole Principle

if Hash: {0,1}" — {0, 1}" and n < m, then for a random x there are on
average 2" strings ' such that Hash(z) = Hash(z’)

Dependencies:
conflict free = 2nd preimage resistant

— 2nd preimage resistant = — conflict free

2nd preimage resistant = one-way

— one-way = — 2nd preimage resistant

Attacks complexity and consequences

functions like MD5 broken (2nd preimage broken in practice)
SHA-1 conflict freeness broken, but 2nd preimage still not
SHA-1: chosen prefix attack: one can take D+ D’ and find 7, 7" such that

SHA-1(D||Z) =SHA-1(D’||Z") (the cost is still very high)

until 2004 the people belived that SHA-1 is secure, authorities issued rec-
ommendations ...

... but prof. Xiaoyun Wang and her team did not believe/knew about it
and broke MD-4 and consequently MD-5 and SHA-1

NIST competition for SHA-3
process:
e open call in 2009, requirements explicitly stated

e many candidates, final decision in 2012 after rounds of open evaluation
and narrowing the set of candidates

e almost transparent process

e hard work done by volunteers

Different approach (Russia): designed in secrecy, later call for attacks
e GOST (weaknesses found, algorithm withdrawn)

e Streebog (Ctpubor) — not broken but serious design weaknesses found

Block concept
input: a block of a fixed size 7 (e.g. = 1088)

output: a block of a fixed size d (e.g. d=256) where d <r

Output block size and birthday paradox:
attack:
i. choose 2%/2 arguments at random
ii. compute hash values for them
iii. find a conflict
it suceeds with a fair probability due to the birthday paradox

Corollary: hash functions with output size 80 bits make no sense

How to hash long messages?

Keccak: sponge construction (phase 1: absorb many blocks, phase 2:
squeezing)

invertible

Merkle-Damgdrd construction:

(picture: Coron et al)

my mo

P T
IV— s |__|¢ '_F _____________

(51 Y2

not invertible

Keccak

absorbmeg sQuUeezing
__ bl __ b2 __ bm ___hl
r*é—) —-}r%-)m 1'4%3 (\I —3 ILﬂ
f . - f f
C - C > C

Fiz O General structure of Keccak algorithm.

picture: Yakut, Tuncer, Ozer

k2

Function f:

only XOR, AND, NOT operations

data viewed as a 3-dimentional structure: 5x5xw
mixing in 3 dimensions (instead of 2 as for AES)

rounds

/

/]
/

SN

f

f/
7
/|
/]

N

/
l
"
'
l

/|

[]

p inter-slice dispersion

&

T breaking horizontal /vertical alignment

1. non-linearity

0 (theta)

%[;’] L J][E]—ali][j][k]@ parity(a[0...4]| — 1] |k]) @ parity (a[0...4]| 7 + 1] [k —
p (rho)

0<t <24, afi][j)[k] — ali)[]k — (t+1)(t+2) /2]

i 32\/0
e (5)=(10) (1)
™ (pi)
a|3i+2j]|i] — al]]j]
X (chi)
alt][j][kl« ali]| j]k] @ (malil] 7 + 1][k| & ali][j + 2][F])
L (iota)

Exclusive-or a round constant into one word of the state.

HMAC

message authentication code based on Hash function and a secret key

HMAC computation for message M and key K:

h:= HMACy (M) = Hash((K & opad)||Hash((K & ipad)||M))

upon receiving M and h, the HMAC of M is recomputed and compared with A

Hash mode for encryption function

idea: instead of creating separate functions for computing hashes, reuse the
existing strong encryption functions

— important for embedded devices: less code/hardware to be installed: e.g. AES
instead of hash and symmetric encryption

— encryption is also a pseudorandom function

Be careful: e.g. Hash(M; M) defined as Ency, (M) would be silly:
i take H :=Ency;, (M>)

ii choose Z at random and Y :=Decy(H)

ii ... and we have a collision on (M, Ms) and (Z.Y)

— hardware implementation of AES might be easier than of a hash function (e.g.
the number of gates required)

AES hash mode

see: on the exercises list

e one of the NIST criteria for AES standard: reuse of encryption for hashing

