CRYPTOGRAPHY LECTURE, 2022

Computer Science and Algorithmics, PWr

Mirosław Kutyłowski

Digital Signature Schemes

Signature

- *−* with a private key SK one can create a signature of a message *M*
- *−* with a public key PK one can verify the signature of M: result "valid" iff
	- i SK has been used for signature creation
	- ii PK corresponds to SK
	- iii the message *M* is exactly the same as used for signature creation

Unforgeability

Forging Game between Challenger (*C*) and Adversary (*A*)

- (Keygen): *C* creates a key pair (pk, sk) at random
- (Learning): A sends messages m_1, \ldots, m_n , C replies with signatures

 $\sigma_i = \text{Sign}(\text{sk}, m_i)$

 \bullet (Guessing): *A* outputs (m, σ)

A wins if $(m, \sigma) \neq (m_i, \sigma_i)$ and $Verify(\text{pk}, m, \sigma) = valid$

A signature scheme is unforgeable if *A* wins with a negligible probability

One-time signature with one-way function *F*

take

$$
f_{0,1} = f(x_{0,1}), f_{1,1} = f(x_{1,1}),
$$

\n
$$
f_{0,2} = f(x_{0,2}), f_{1,2} = f(x_{1,2}),
$$

\n...
\n
$$
f_{0,n} = f(x_{0,n}), f_{1,n} = f(x_{1,n}),
$$

\nPK = $(f_{0,1}, f_{1,1}, \ldots, f_{0,n}, f_{1,n})$
\nSK = $(x_{0,1}, x_{1,1}, \ldots, x_{0,n}, x_{1,n})$

Signature for $[m_1 \ldots, m_n]$ is

 $x_{m_1,1}, x_{m_2,2}, \ldots, x_{m_n,n}$

Verification: check $f(x_{m_j,j}) = f_{m_j,j}$

Signing long messages

Signature creation for message *M*:

step 1: $h := \text{Hash}(M)$ for a collision-resistant hash function Hash

step 2: apply the core algorithm with secret key SK

so: the core algorithm gets input of a fixed size

RSA signatures

patented, patent expired in 2000 parameters like for RSA encryption

Signing *M* (PSS variant):

i. $h :=$ Hash $(r||M)$ for random r

 $\mathbf{a} \mathbf{i} \mathbf{j} \mathbf{k} = h^d \bmod n$ for the secret d

iii. output r, s

another (weaker) variant (RSASSA-PSS): $h := \operatorname{Hash}(r \mid \operatorname{Hash}(M))$

ElGamal signature

Setup: like for ElGamal encryption:

large prime *p*, computations in Z*^p* (multiplication modulo *p*), *g−* generator

secret: $x < p - 1$ chosen at random,

public: $X = g^x \bmod p$

Signature creation for message *M* and *x*:

i. choose $k < p-1$ at random, k must be coprime with $p-1$ ii. $r := g^k \bmod p$ iii. $s := (\text{Hash}(M) - x \cdot r) \cdot k^{-1} \text{ mod } p - 1$

Verification: valid iff

$$
g^{\operatorname{Hash}(M)}\!=\!X^r\cdot r^s
$$

DSA Signature

US standard (DSS), optimization regarding the size:

Setup:

- *− p* a prime number, *qjp −* 1*;* where *q* is also a large prime
- *− g* an element of order *q*
	- \rightarrow choose *a* at random

$$
\rightarrow \ \ g := a^{(p-1)/q} \ \text{, if } \ g \neq 1 \ \text{then } \ g \ \text{ found}
$$

- *−* secret key: *x < q* chosen at random
- *−* public key: $X = g^x \bmod p$

Remark: *p; q* can be used by many signers! (not like in the case of RSA)

DSA signature creation

i. choose *k < q* at random ii. $r := (g^k \bmod p) \bmod q$ iii. $s := (\text{Hash}(M) - x \cdot r) \cdot k^{-1} \text{mod } q$ iv. output (*r; s*)

signature size: two numbers *<q*

Verification

i. check that $r, s < q$ ii. *w* := *s−*¹ mod *q* iii. $u_1 := \text{Hash}(M) \cdot w$, $u_2 := r \cdot w \mod q$ iv. $v := (g^{u_1} \cdot X^{u_2} \text{ mod } p) \text{mod } q$ v. valid if $r = v$

EC DSA

variant of DSA based on Elliptic Curves (additive group with hard DLP) instead of modular arithmetic:

- *−* modular arithmetic requires bigger numbers as \mathbb{Z}_p is a ring, more opportunities for computing discrete logarithm
- *−* EC: complicated formulas, but nevertheless computational complexity lower

used e.g. on electronic identity cards, cryptographic signing cards, ...

Schnorr signature

patented, patent expired in 2008

Setup:

like for DSA, *g*- generator of a subgroup of order *q* where *q* is prime

- *−* private key: *x < q* chosen at random
- *−* public key: $X = g^x \bmod p$

Signature creation:

- i. *k < q* chosen at random,
- ii. $r := g^k \bmod p$
- iii. $e := \text{Hash}(M, r)$
- iv. $s := k − e \cdot x \mod q$
- v. output (*s; e*)

Verification:

 $\mathsf{check} \; \mathsf{iff} \; e = \mathrm{Hash}(M, g^s \cdot X^e)$

Schnorr signature $-$ properties

- *−* much simpler than DSA but blocked by the patent for many years
- never use the same *k*, otherwise we have a system of equations:

```
s_1 := k - e_1 \cdot x \mod q
```

```
s_2 := k - e_2 \cdot x \mod q
```
with unknowns *k; x* (easy to solve)

Schnorr signature security

in ROM possibility to forge leads to breaking DLP:

- *−* forgery *A* uses an oracle for a hash function
- *− r* must be generated before there is a call to oracle with (*M; r*)
- *−* run*A* so that a signature (*s; e*) is obtained
- $−$ "rewind" A to the moment when it made a call to the oracle, reprogram the oracle to get e^\prime
- *−* equations

 $s = k - e \cdot x \mod q$

 $s' = k - e' \cdot x \mod q$

(application of the famous "Forking Lemma")

EdDSA

like Schnorr signature with a major modification:

- *−* instead of choosing *k* at random ...
- *− k* calculated in a secret but deterministic way:

 $k :=$ **Hash** (x, M)

where *x* is a part of the secret key and *M* is the message to be signed

− some details due to the use of elliptic curves - Eduards curve

Result: do not worry about quality/safety of the random number generator!

Ring signature

public keys X_1, \ldots, X_k correspond to a signature

- *−* only one key *xⁱ* used for signature creation
- *−* impossible to say which private key has been used
- *−* used e.g in Monero cryptocurrency

Example: public keys X_1, X_2, X_3

signature creation with known x_2 :

i. choose q_1, q_3, c_1, c_3 at random, choose α at random

ii.
$$
L_1 := g^{q_1} \cdot X_1^{c_1}
$$
, $L_3 := g^{q_3} \cdot X_3^{c_3}$, $L_2 := g^{\alpha}$

- iii. $c :=$ Hash (M, L_1, L_2, L_3)
- $iv.$ $c_2 := c c_1 c_2 \mod q$

 $v. q_2 := \alpha - c_2 \cdot x_2$

output $(q_1, c_1, q_2, c_2, q_3, c_3)$

Verification: $c_1 + c_2 + c_3 = \text{Hash}(M, L_1, L_2, L_3)$, where $L_i := g^{q_i} \cdot X_i^{c_i}$

Properties of Ring Signatures

information-theoretic security:

no matter what computational power has the adversary,

he cannot find out who from the ring created the signature

in contrast: computational security means:

it is infeasible to break ... given available resources

Examples of use: signing a transaction in Monero:

- *−* a ring signature for a transaction: signature over a new public transaction key (anonymous recipient can derive the new secret transaction key)
- *−* impossible to say where the money coming from from which ring member
- *−* more effort needed: prevent using a ring signature twice (a tricky solution in monero, maybe we talk later ...)

− however: think about traffic analysis

Example: authentication with privacy protection:

Alice with key pair (PK*;* SK) authenticates herself

against Bob holding keys $(\mathrm{PK}', \mathrm{SK}')$

Unsafe solution:

- i. Bob creates a challenge *c* (including time, ID's of Alice and Bob)
- ii. Bob sends *c* to Alice
- iii. Alice signs: $SK: s := \text{Sign}_{SK}(c)$
- iv. Alice returns the signature to Bob
- v. Bob verifiers the signature

PROBLEM: Bob can use *s* to prove that he has interacted with Alice

Improved authentication algorithm

Alice with key pair (PK*;* SK) authenticates herself

against Bob holding keys $(\mathrm{PK}', \mathrm{SK}')$

safe solution:

- i. Bob creates a challenge *c* (including time, ID's of Alice and Bob)
- ii. Bob sends *c* to Alice
- iii. Alice creates a ring signature $s := \text{Sign}_{SK,PK,K}(c)$
- iv. Alice returns the signature to Bob
- v. Bob verifiers the signature *s*

Bob knows that *s* comes from Alice as he has not signed it.

Bob cannot prove Mallet that he has not created *s*

Forthcoming techniques:

"post-quantum" - resistant to potential attacks,

e.g. based on lattices