
CRYPTOGRAPHY LECTURE, 2022

Computer Science and Algorithmics, PWr

Mirosªaw Kutyªowski

Digital Signature Schemes

Signature

− with a private key SK one can create a signature of a message M

− with a public key PK one can verify the signature of M : result �valid� iff

i SK has been used for signature creation

ii PK corresponds to SK

iii the message M is exactly the same as used for signature creation



Unforgeability

Forging Game between Challenger (C) and Adversary (A)

� (Keygen): C creates a key pair (pk, sk) at random

� (Learning): A sends messages m1; : : : ;mn, C replies with signatures

�i=Sign(sk;mi)

� (Guessing): A outputs (m;�)

A wins if (m;�)=/ (mi; �i) and Verify(pk;m; �)= valid

A signature scheme is unforgeable if A wins with a negligible probability



One-time signature with one-way function F

take

f0;1= f(x0;1); f1;1= f(x1;1);

f0;2= f(x0;2); f1;2= f(x1;2);

: : ::

f0;n= f(x0;n); f1;n= f(x1;n);

PK=(f0;1; f1;1; : : : ; f0;n; f1;n)

SK=(x0;1; x1;1; : : : ; x0;n; x1;n)

Signature for [m1 : : : ;mn] is

xm1;1; xm2;2; : : : ; xmn;n

Verification: check f(xmj ;j)= fmj;j



Signing long messages

Signature creation for message M :

step 1: h :=Hash(M) for a collision-resistant hash function Hash

step 2: apply the core algorithm with secret key SK

so: the core algorithm gets input of a fixed size



RSA signatures

patented, patent expired in 2000

parameters like for RSA encryption

Signing M (PSS variant):

i. h :=Hash(rkM) for random r

ii. s :=hd modn for the secret d

iii. output r; s

another (weaker) variant (RSASSA-PSS): h :=Hash(rkHash(M))



ElGamal signature

Setup: like for ElGamal encryption:

large prime p, computations in Zp
� (multiplication modulo p), g− generator

secret: x< p− 1 chosen at random,

public: X = gxmod p

Signature creation for message M and x:

i. choose k < p− 1 at random, k must be coprime with p− 1

ii. r := gk mod p

iii. s := (Hash(M)−x � r) � k−1mod p− 1

Verification: valid iff

gHash(M)=Xr � rs



DSA Signature

US standard (DSS), optimization regarding the size:

Setup:

− p a prime number, q jp− 1;where q is also a large prime

− g - an element of order q

! choose a at random

! g := a(p−1)/q , if g=/ 1 then g found

− secret key: x< q chosen at random

− public key: X = gx mod p

Remark: p; q can be used by many signers! (not like in the case of RSA)



DSA signature creation

i. choose k < q at random

ii. r := (gk mod p)mod q

iii. s := (Hash(M)−x � r) � k−1mod q

iv. output (r; s)

signature size: two numbers <q

Verification

i. check that r; s< q

ii. w := s−1mod q

iii. u1 :=Hash(M) �w; u2 := r �w mod q

iv. v := (gu1 �Xu2 mod p)mod q

v. valid if r= v



EC DSA

variant of DSA based on Elliptic Curves (additive group with hard DLP) instead
of modular arithmetic:

− modular arithmetic requires bigger numbers as Zp is a ring, more opportunities
for computing discrete logarithm

− EC: complicated formulas, but nevertheless computational complexity lower

used e.g. on electronic identity cards, cryptographic signing cards, . . .



Schnorr signature
patented, patent expired in 2008

Setup:

like for DSA, g- generator of a subgroup of order q where q is prime

− private key: x< q chosen at random

− public key: X = gx mod p

Signature creation:

i. k < q chosen at random,

ii. r := gk mod p

iii. e :=Hash(M; r)

iv. s := k− e �xmod q

v. output (s; e)

Verification:

check iff e=Hash(M; gs �Xe)



Schnorr signature � properties

− much simpler than DSA but blocked by the patent for many years

− never use the same k, otherwise we have a system of equations:

s1 := k− e1 �xmod q

s2 := k− e2 �xmod q

with unknowns k; x (easy to solve)



Schnorr signature security

in ROM possibility to forge leads to breaking DLP:

− forgery A uses an oracle for a hash function

− r must be generated before there is a call to oracle with (M; r)

− run A so that a signature (s; e) is obtained

− �rewind� A to the moment when it made a call to the oracle, reprogram the
oracle to get e0

− equations

s= k− e �x mod q

s0= k− e0 �x mod q

(application of the famous �Forking Lemma�)



EdDSA

like Schnorr signature with a major modification:

− instead of choosing k at random .. .

− k calculated in a secret but deterministic way:

k :=Hash(x;M)

where x is a part of the secret key and M is the message to be signed

− some details due to the use of elliptic curves - Eduards curve

Result: do not worry about quality/safety of the random number generator!



Ring signature

public keys X1; : : : ; Xk correspond to a signature

− only one key xi used for signature creation

− impossible to say which private key has been used

− used e.g in Monero cryptocurrency



Example: public keys X1;X2;X3

signature creation with known x2 :

i. choose q1; q3; c1;c3 at random, choose � at random

ii. L1 := gq1 �X1
c1, L3 := gq3 �X3

c3 , L
2
:= g�

iii. c :=Hash(M;L1; L2; L3)

iv. c2 := c− c1− c2mod q

v. q2 :=�− c2 �x2

output (q1;c1;q2; c2; q3; c3)

Verification: c1+ c2+ c3=Hash(M;L1; L2; L3), where Li := gqi �Xi
ci



Properties of Ring Signatures

information-theoretic security:

no matter what computational power has the adversary,

he cannot find out who from the ring created the signature

in contrast: computational security means:

it is infeasible to break . . . given available resources



Examples of use: signing a transaction in Monero:

− a ring signature for a transaction: signature over a new public transaction key
(anonymous recipient can derive the new secret transaction key)

− impossible to say where the money coming from - from which ring member

− more effort needed: prevent using a ring signature twice (a tricky solution in
monero, maybe we talk later . . . )

− however: think about traffic analysis



Example: authentication with privacy protection:

Alice with key pair (PK;SK) authenticates herself

against Bob holding keys (PK0; SK0)

Unsafe solution:

i. Bob creates a challenge c (including time, ID's of Alice and Bob)

ii. Bob sends c to Alice

iii. Alice signs: SK: s :=SignSK(c)

iv. Alice returns the signature to Bob

v. Bob verifiers the signature

PROBLEM: Bob can use s to prove that he has interacted with Alice



Improved authentication algorithm

Alice with key pair (PK;SK) authenticates herself

against Bob holding keys (PK0; SK0)

safe solution:

i. Bob creates a challenge c (including time, ID's of Alice and Bob)

ii. Bob sends c to Alice

iii. Alice creates a ring signature s :=SignSK;PK;PK0(c)

iv. Alice returns the signature to Bob

v. Bob verifiers the signature s

Bob knows that s comes from Alice as he has not signed it.

Bob cannot prove Mallet that he has not created s



Forthcoming techniques:

�post-quantum� - resistant to potential attacks,

e.g. based on lattices


