CRYPTOGRAPHY LECTURE, 2022
Computer Science and Algorithmics, PWr

Mirostaw Kutyfowski

Digital Signature Schemes

Signature

— with a private key SK one can create a signature of a message M

— with a public key PK one can verify the signature of M: result “valid” iff
I SK has been used for signature creation
i PK corresponds to SK

i the message M is exactly the same as used for signature creation

Unforgeability

Forging Game between Challenger (C') and Adversary (A)

o (Keygen): C' creates a key pair (pk, sk) at random

e (Learning): A sends messages my,...,m,, C replies with signatures
o; = Sign(sk, m;)

e (Guessing): A outputs (m, o)

A wins if (m, o) (m;, 0;) and Verify(pk, m, o) = valid

A signature scheme is unforgeable if A wins with a negligible probability

One-time signature with one-way function F'
take

fooi=f(xon), fi1= f(z1,1),

Jo2= f(CI?o,Q), Ji2= f(5131,2)>

fO,n — f(ilfo,n), fl,n — f(xl,n)a
PK = (fo,1, fi1,-- -5 fons fin)

SK = (Io,h L1,15--+5%0,n9 iE1,n)
Signature for [my...,m,] is
Lmi,1y Lmg,2y -+ -5 Lmy,n

Verification: check f (2, ;) = fim,.;

Signing long messages
Signature creation for message M
step 1: h:=Hash(M) for a collision-resistant hash function Hash

step 2: apply the core algorithm with secret key SK

so: the core algorithm gets input of a fixed size

RSA signatures

patented, patent expired in 2000
parameters like for RSA encryption
Signing M (PSS variant):
i. h:=Hash(r||M) for random r
ii. s:=h?modn for the secret d
l. output r, s

another (weaker) variant (RSASSA-PSS): h:=Hash(r|Hash(M))

ElGamal signature

Setup: like for ElIGamal encryption:
large prime p, computations in Z; (multiplication modulo p), g — generator
secret: © < p — 1 chosen at random,
public: X = ¢ mod p
Signature creation for message M and x:
I. choose k < p—1 at random, k£ must be coprime with p — 1
ii. 7:=¢" mod p
iii. s:=(Hash(M)—x-r)-k 'mod p—1

Verification: valid iff

DSA Signature

US standard (DSS), optimization regarding the size:
Setup:
— p a prime number, ¢|p — 1, where ¢ is also a large prime
— ¢ - an element of order ¢
— choose a at random
— g:=aP"V/7 if g+ 1then g found
— secret key: x < ¢ chosen at random

— public key: X = g” mod p

Remark: p. ¢ can be used by many signers! (not like in the case of RSA)

DSA signature creation

I. choose k < ¢ at random

i. 7:=(¢" mod p)mod ¢
iii. s:=(Hash(M)—x-7)-k 'mod ¢
iv. output (7, s)

signature size: two numbers <g

Verification

I. check that r, s < ¢

ii. w:=s"'modgq

iii. u;:=Hash(M)-w, wuz:=7r-wmodq
iv. v:=(g“- X*2mod p)mod q

v. valid if r=wv

EC DSA

variant of DSA based on Elliptic Curves (additive group with hard DLP) instead
of modular arithmetic:

— modular arithmetic requires bigger numbers as Z, is a ring, more opportunities
for computing discrete logarithm

— EC: complicated formulas, but nevertheless computational complexity lower

used e.g. on electronic identity cards, cryptographic signing cards, ...

Schnorr signature
patented, patent expired in 2008
Setup:
like for DSA, g- generator of a subgroup of order ¢ where ¢ is prime
— private key: x < ¢ chosen at random
— public key: X = ¢g* mod p
Signature creation:

I. k < q chosen at random,

ii. r:= ¢"” mod p

iii. e:=Hash(M, 1)

iv. s:=k—e-xmodq

v. output (s, e)
Verification:
check iff e =Hash(M, ¢g°- X°)

Schnorr signature — properties
— much simpler than DSA but blocked by the patent for many years
— never use the same k, otherwise we have a system of equations:
s1:=k—e1-xrmodgq
So:=k —es-xmodq

with unknowns k,z (easy to solve)

Schnorr signature security

in ROM possibility to forge leads to breaking DLP:

— forgery A uses an oracle for a hash function

— 1 must be generated before there is a call to oracle with (M, r)
— run A so that a signature (s, ¢) is obtained

— "rewind” A to the moment when it made a call to the oracle, reprogram the
oracle to get ¢’

— equations
s=k—e-x modq

s'=k—e'-x modq

(application of the famous “Forking Lemma”)

EdDSA

like Schnorr signature with a major modification:
— instead of choosing k at random ...

— k calculated in a secret but deterministic way:

k:=Hash(x, M)

where x is a part of the secret key and M is the message to be signed

— some details due to the use of elliptic curves - Eduards curve

Result: do not worry about quality/safety of the random number generator!

Ring signature

public keys X;, ..., X} correspond to a signature
— only one key x; used for signature creation
— impossible to say which private key has been used

— used e.g in Monero cryptocurrency

Example: public keys X7, X5, X3

signature creation with known x5 :
i. choose ¢, g3, c1.c3 at random, choose o at random
i. L1:=g?- X{', Ly:=¢g®- X3, L,:=g°

iii. c:=Hash(M, Ly, Lo, L3)

V. Cg:=cC — 1 — cp mod ¢

V. (2 :=Q — Co+ To

output (q1.¢1.Go, Ca, q3, C3)

Verification: ¢; + co + ¢ =Hash(M, Ly, Lo, L3), where L;:= g% - X[

Properties of Ring Signatures
information-theoretic security:
no matter what computational power has the adversary,

he cannot find out who from the ring created the signature

in contrast: computational security means:

it is infeasible to break ... given available resources

Examples of use: signing a transaction in Monero:

— a ring signature for a transaction: signature over a new public transaction key
(anonymous recipient can derive the new secret transaction key)

— impossible to say where the money coming from - from which ring member

— more effort needed: prevent using a ring signature twice (a tricky solution in
monero, maybe we talk later ...)

— however: think about traffic analysis

Example: authentication with privacy protection:
Alice with key pair (PK,SK) authenticates herself

against Bob holding keys (PK’, SK’)

Unsafe solution:
i. Bob creates a challenge ¢ (including time, ID’s of Alice and Bob)
ii. Bob sends ¢ to Alice

iii. Alice signs: SK: s:= Signgk(c)

iv. Alice returns the signature to Bob

v. Bob verifiers the signature

PROBLEM: Bob can use s to prove that he has interacted with Alice

Improved authentication algorithm
Alice with key pair (PK,SK) authenticates herself

against Bob holding keys (PK’, SK’)

safe solution:
i. Bob creates a challenge ¢ (including time, ID’s of Alice and Bob)
ii. Bob sends ¢ to Alice

iii. Alice creates a ring signature s:= Signgk pk pr/(C)

iv. Alice returns the signature to Bob

v. Bob verifiers the signature s

Bob knows that s comes from Alice as he has not signed it.

Bob cannot prove Mallet that he has not created s

Forthcoming techniques:
“post-quantum’ - resistant to potential attacks,

e.g. based on lattices

