CRYPTOGRAPHY LECTURE, 2022 Computer Science and Algorithmics, PWr Mirosław Kutyłowski

Digital Signature Schemes

Signature

- $-\,$ with a private key ${\rm SK}$ one can create a signature of a message M
- with a public key PK one can verify the signature of M: result "valid" iff
 - i $\,\mathrm{SK}$ has been used for signature creation
 - ii $\,\rm PK$ corresponds to $\rm SK$
 - iii the message ${\cal M}$ is exactly the same as used for signature creation

Unforgeability

Forging Game between Challenger (C) and Adversary (A)

- (Keygen): C creates a key pair (pk, sk) at random
- (Learning): A sends messages m_1, \ldots, m_n , C replies with signatures

 $\sigma_i = \operatorname{Sign}(\operatorname{sk}, m_i)$

• (Guessing): A outputs (m, σ)

A wins if $(m, \sigma) \neq (m_i, \sigma_i)$ and $Verify(pk, m, \sigma) = valid$

A signature scheme is unforgeable if \boldsymbol{A} wins with a negligible probability

One-time signature with one-way function F

take

$$f_{0,1} = f(x_{0,1}), f_{1,1} = f(x_{1,1}),$$

$$f_{0,2} = f(x_{0,2}), f_{1,2} = f(x_{1,2}),$$

....

$$f_{0,n} = f(x_{0,n}), f_{1,n} = f(x_{1,n}),$$

$$PK = (f_{0,1}, f_{1,1}, \dots, f_{0,n}, f_{1,n})$$

$$SK = (x_{0,1}, x_{1,1}, \dots, x_{0,n}, x_{1,n})$$

Signature for $[m_1 \ldots, m_n]$ is

$$x_{m_1,1}, x_{m_2,2}, \ldots, x_{m_n,n}$$

Verification: check $f(x_{m_j,j}) = f_{m_j,j}$

Signing long messages

Signature creation for message M:

step 1: $h := \operatorname{Hash}(M)$ for a collision-resistant hash function Hash

step 2: apply the core algorithm with secret key $\rm SK$

so: the core algorithm gets input of a fixed size

RSA signatures

patented, patent expired in 2000 parameters like for RSA encryption

Signing M (PSS variant):

i. $h := \operatorname{Hash}(r \| M)$ for random r

ii. $s := h^d \mod n$ for the secret d

iii. output r, s

another (weaker) variant (RSASSA-PSS): $h := \operatorname{Hash}(r || \operatorname{Hash}(M))$

ElGamal signature

Setup: like for ElGamal encryption:

large prime p, computations in \mathbb{Z}_p^* (multiplication modulo p), g-generator

secret: x chosen at random,

public: $X = g^x \mod p$

Signature creation for message M and x:

i. choose
$$k < p-1$$
 at random, k must be coprime with $p-1$
ii. $r := g^k \mod p$
iii. $s := (\text{Hash}(M) - x \cdot r) \cdot k^{-1} \mod p - 1$

Verification: valid iff

$$g^{\operatorname{Hash}(M)} \!=\! X^r \cdot r^s$$

DSA Signature

US standard (DSS), optimization regarding the size:

Setup:

- p a prime number, q | p 1, where q is also a large prime
- g an element of order q
 - $\rightarrow~$ choose a at random

$$\rightarrow g := a^{(p-1)/q}$$
 , if $g \neq 1$ then g found

- secret key: x < q chosen at random
- public key: $X = g^x \mod p$

Remark: p, q can be used by many signers! (not like in the case of RSA)

DSA signature creation

i. choose k < q at random ii. $r := (g^k \mod p) \mod q$ iii. $s := (\operatorname{Hash}(M) - x \cdot r) \cdot k^{-1} \mod q$ iv. output (r, s)signature size: two numbers < q

Verification

i. check that r, s < qii. $w := s^{-1} \mod q$ iii. $u_1 := \operatorname{Hash}(M) \cdot w, \quad u_2 := r \cdot w \mod q$ iv. $v := (g^{u_1} \cdot X^{u_2} \mod p) \mod q$ v. valid if r = v

EC DSA

variant of DSA based on Elliptic Curves (additive group with hard DLP) instead of modular arithmetic:

- modular arithmetic requires bigger numbers as \mathbb{Z}_p is a ring, more opportunities for computing discrete logarithm
- EC: complicated formulas, but nevertheless computational complexity lower

used e.g. on electronic identity cards, cryptographic signing cards, ...

Schnorr signature

patented, patent expired in 2008

Setup:

like for DSA, $g\mbox{-}$ generator of a subgroup of order q where q is prime

- private key: x < q chosen at random
- public key: $X = g^x \mod p$

Signature creation:

```
i. k < q chosen at random,
```

- ii. $r := g^k \mod p$
- iii. $e := \operatorname{Hash}(M, r)$
- iv. $s := k e \cdot x \mod q$
- v. output (s, e)

Verification:

check iff $e = \operatorname{Hash}(M, g^s \cdot X^e)$

Schnorr signature – properties

- much simpler than DSA but blocked by the patent for many years
- never use the same k, otherwise we have a system of equations:

```
s_1 := k - e_1 \cdot x \bmod q
```

```
s_2 := k - e_2 \cdot x \bmod q
```

```
with unknowns k, x (easy to solve)
```

Schnorr signature security

in ROM possibility to forge leads to breaking DLP:

- forgery ${\cal A}$ $\,$ uses an oracle for a hash function $\,$
- -r must be generated before there is a call to oracle with (M,r)
- run ${\cal A}$ so that a signature (s,e) is obtained
- ''rewind'' ${\mathcal A}\,$ to the moment when it made a call to the oracle, reprogram the oracle to get e'
- equations

 $s \,{=}\, k \,{-}\, e \cdot x \, \operatorname{mod} \, q$

 $s'\!=\!k-e'\cdot x \bmod q$

(application of the famous "Forking Lemma")

EdDSA

like Schnorr signature with a major modification:

- instead of choosing k at random ...
- -k calculated in a secret but deterministic way:

 $k := \operatorname{Hash}(x, M)$

where \boldsymbol{x} is a part of the secret key and \boldsymbol{M} is the message to be signed

- some details due to the use of elliptic curves - Eduards curve

Result: do not worry about quality/safety of the random number generator!

Ring signature

public keys X_1, \ldots, X_k correspond to a signature

- only one key x_i used for signature creation
- $-\,$ impossible to say which private key has been used
- used e.g in Monero cryptocurrency

Example: public keys X_1, X_2, X_3

signature creation with known x_2 :

i. choose q_1, q_3, c_1, c_3 at random, choose α at random

ii.
$$L_1 := g^{q_1} \cdot X_1^{c_1}$$
, $L_3 := g^{q_3} \cdot X_3^{c_3}$, $L_2 := g^{\alpha}$

- iii. $c := \operatorname{Hash}(M, L_1, L_2, L_3)$
- iv. $c_2 := c c_1 c_2 \mod q$

v. $q_2 := \alpha - c_2 \cdot x_2$

output $(q_1, c_1, q_2, c_2, q_3, c_3)$

Verification: $c_1 + c_2 + c_3 = \text{Hash}(M, L_1, L_2, L_3)$, where $L_i := g^{q_i} \cdot X_i^{c_i}$

Properties of Ring Signatures

information-theoretic security:

no matter what computational power has the adversary,

he cannot find out who from the ring created the signature

in contrast: **computational security** means:

it is infeasible to break ... given available resources

Examples of use: signing a transaction in Monero:

- a ring signature for a transaction: signature over a new public transaction key (anonymous recipient can derive the new secret transaction key)
- impossible to say where the money coming from from which ring member
- more effort needed: prevent using a ring signature twice (a tricky solution in monero, maybe we talk later ...)

- however: think about traffic analysis

Example: authentication with privacy protection:

Alice with key pair (PK, SK) authenticates herself

against Bob holding keys $(\mathrm{PK}',\mathrm{SK}')$

Unsafe solution:

- i. Bob creates a challenge c (including time, ID's of Alice and Bob)
- ii. Bob sends \boldsymbol{c} to Alice
- iii. Alice signs: SK: $s := \text{Sign}_{SK}(c)$
- iv. Alice returns the signature to Bob
- v. Bob verifiers the signature

PROBLEM: Bob can use s to prove that he has interacted with Alice

Improved authentication algorithm

Alice with key pair (PK, SK) authenticates herself

against Bob holding keys $(\mathrm{PK}',\mathrm{SK}')$

safe solution:

- i. Bob creates a challenge c (including time, ID's of Alice and Bob)
- ii. Bob sends c to Alice
- iii. Alice creates a ring signature $s := \operatorname{Sign}_{SK,PK,PK'}(c)$
- iv. Alice returns the signature to Bob
- v. Bob verifiers the signature s

Bob knows that \boldsymbol{s} comes from Alice as he has not signed it.

Bob cannot prove Mallet that he has not created \boldsymbol{s}

Forthcoming techniques:

"post-quantum" - resistant to potential attacks,

e.g. based on lattices