CRYPTOGRAPHY LECTURE, 2022

Computer Science and Algorithmics, PWr

Mirosław Kutyłowski

Authentication/Identification

eIDAS Regulation:

'electronic identification' means the process of using person identification data in electronic form uniquely representing either a natural or legal person, or a natural person representing a legal person;

'electronic identification means' means a material and/or immaterial unit containing person identification data and which is used for authentication for an online service

'authentication' means an electronic process that enables the electronic identification of a natural or legal person, or the origin and integrity of data in electronic form to be confirmed;

"identyfikacja elektroniczna" oznacza proces używania danych w postaci elektronicznej identyfikujących osobę, unikalnie reprezentujących osobę fizyczną lub prawną, lub osobę fizyczną reprezentującą osobę prawną;

"uwierzytelnianie" oznacza proces elektroniczny, który umożliwia identyfikację elektroniczną osoby fizycznej lub prawnej, lub potwierdzenie pochodzenia oraz integralności weryfikowanych danych w postaci elektronicznej;

Authentication:

what I have - hardware token

what I know - password

who I am - biometrics (details another lecture!)

Biometric authtentication

e.g. fingerprints

Fingerprints – crypto issues

how to store biometric data for comparison so that it cannot be used for impersonation?

- a) small errors when reading biometric data
- b) how to compare $\Delta + {\rm error}$ with $Enc_{\rm PK}(\Delta)?$ similarity of plaintexts must not be detectable

"Check on Chip" methods

Alice and Bob open a session:

Alice must prove the person on the other side that she is Alice

- $-\,$ Bob must prove the person on the other side that he is Bob
- a session key must be established

Options:

- i. Alice and Bob share a key
- ii. no preshared keys, only public keys

Symmetric: based on preshared keys

challenge-response protocol for shared K:

i. Bob sends random nonce r_A to Alice

ii. Alice responds with $s = F(K, r_A)$ where F is a one-way function

iii. Bob checks whether s is correct

mutual authentication version:

- Alice nad Bob exchange random nonces r_A, r_B
- Alice sends $F(K, r_A, r_B)$, Bob sends $F(K, r_B, r_A)$

Example: keyless car

(pictures by T.Glovker, T. Mantere, M. Elmusrati

Dynamic shared key

each time when authentication suceeds the shared key is changed

- clones are detected
- problems of synchronization

Asymmetric authentication

- $-\,$ Alice holds a private key $\rm SK$
- Bob knows a matching paublic key PK of Alice (e.g. from a certificate)
- a person proves that she knows SK in order to authenticate as Alice

- Interactive Proof of Knowledge

Requirement:

no information on SK should be leaked during the authentication process

(otherwise Alice is no longer the only person that holds SK - impersonation becomes possible)

already discussed: Alice signs a random challenge

Schnorr Identification Protocol

Alice: secret key SK = x, public key $PK = g^x$

- i. Alice chooses k at random, $r := g^k$
- ii. Alice sends r to Verifier
- iii. Verifier chooses c at random and sends to Alice
- iv. Alice calculates $s := k x \cdot c \mod q$ and sends s to Verifier
- v. Verifier checks that $g^s \cdot PK^c = r$

observation: there is only one value s that would satisfy the test. In order to calculate it Alice must know x (and k)

Impersonation for Schnorr authentication?

Assume that an algorithm \mathcal{A} can do it.

Use ${\mathcal A}$ to break Discrete Logarithm Problem

1. run \mathcal{A} : r received, challenge c chosen, s received

2. rerun \mathcal{A} with the same randomness:

-. once r received choose a different challenge c^\prime

-. response s' from ${\mathcal A}$

for (unknown) discrete logarithm k of r:

 $s = k - x \cdot c \bmod q$

$$s' = k - x \cdot c' \bmod q$$

solve it for x

Simulating a transcript of interaction

Verifier can create a valid transcript o interaction without talking to Alice

 \Rightarrow Verifier cannot use a transcript to show that he has interacted with Alice

(privacy, data minimality etc)

Forging a transcript:

- i. choose c and s at random
- ii. calculate $r := g^s \cdot \mathbf{PK}^c$

(the same probability distribution of (r, c, s) as for genuine executions)

Consequences: zero-knowledge property

informally: executing the protocol does not increase the chances of Verifier to impersonate Alice

Why:

if protocol transcripts are required for the attack \mathcal{A} , then forge them himself

So: if impersonation is possible, then it is possible based on the public key only (reduction to DLP)

Fiat-Shamir heuristics:

from an interactive proof of knowledge to a digital signature scheme:

- replace the random challenge by Hash of the elements exchanged so far

Fiat-Shamir protocol:

Alice knows square root s of $v \mod \mathsf{RSA}$ number n

interactive proof of knowledge of s:

- i. Alice chooses r at random, $x := r^2 \mod n$
- ii. Alice sends r to Verifier
- iii. Verifier chooses bit \boldsymbol{b} at random

iv. if b = 0, then Alice has to present a = r, else Alice has to present $a = r \cdot s$

v. Verifier checks that $a^2 = x \mod n$ (if b = 0) or that $a^2 = x \cdot v \mod n$ (if b = 1)

probability to cheat successfully: 0.5, so the protocol repeated many times

or use Fiat-Shamir heuristic to reduce the number of messages

Stinson-Wu protocol

- 1. Verifier chooses x at random, computes $X := g^x$ and $Y := \operatorname{Hash}(A^x)$
- 2. Verifier sends X, Y to Alice
- 3. Alice computes $Z := X^a$ and aborts if $Y \neq \text{Hash}(Z)$
- 4. Alice sends Z
- 5. Verifier accepts iff $Z = A^x$

Nice feature: Alice knows that Verifier knows x and can compute the answer himself

Password authentication

- significant challenge, since the entropy of passwords is low, it allows brute force attack
- a passive observer may try to derive the password used
- usually integrated as Password Authenticated Key Exchange (PAKE)

Jablon and his seminal protocol:

- never used due to a patent
- German authorithies developed their protocol to avoid the patent, now this protocol in ID documents (e.g. Polish personal ID: password= CAN number)

PACE

Chip(A)		Reader(B)
holds:		holds:
π - password		π , input from the document owner
$K_{\pi} := H(\pi 0)$ choose $s \leftarrow \mathbb{Z}_q^*$ at random		$K_{\pi} := H(\pi 0)$
$z := \operatorname{Enc}(K_{\pi}, s)$	$\xrightarrow{g,z}$	abort if \mathcal{G} incorrect $s := \text{Dec}(K_{\pi}, z)$
choose $x_A \leftarrow \mathbb{Z}_q^*$ at random	DH2Point Start	choose $x_B \leftarrow \mathbb{Z}_q^*$ at random
$X_A := g^{x_A}$	(TB)	$X_B := g^{x_B}$
abort if $X_B \notin \langle g \rangle \setminus \{1\}$ $h := X_B^{x_A}$ abort if $h = 1$ $\hat{g} := h \cdot g^s$	$\xrightarrow{X_A}$ DH2Point End	abort if $X_A \notin \langle g \rangle \setminus \{1\}$ $h := X_A^{x_B}$ abort if $h = 1$ $\hat{g} := h \cdot g^s$
choose $y_A \leftarrow \mathbb{Z}_a^*$ at random		choose $y_B \leftarrow \mathbb{Z}_q^*$ at random
$Y_A := \hat{g}^{y_A}$	$\begin{array}{c} Y_B \\ Y_A \end{array}$	$Y_B := \hat{g}^{y_B}$
$K := Y_B^{y_A}$,	$K := Y_A^{y_B}$
$K_{\text{Enc}} := H(K 1)$		$K_{\text{Enc}} := H(K 1)$
$K_{\text{MAC}} := \hat{H}(K 2), K'_{\text{MAC}} := H(K 3)$ $T_A := \text{MAC}(K'_{\text{MAC}}, (Y_B, \mathcal{G}, \hat{g}))$		$K_{\text{MAC}} := \hat{H}(K 2), K'_{\text{MAC}} := H(K 3)$ $T_B := \text{MAC}(K'_{\text{MAC}}, (Y_A, \mathcal{G}, \hat{g}))$
	T_B	
check correctness of T_B by recomputing it	$\xrightarrow{T_A}$	check correctness of T_A by recomputing it