CRYPTOGRAPHY LECTURE, 2022
Computer Science and Algorithmics, PWr

Mirostaw Kutyfowski
Zero Knowledge Protocols

we are not talking about “ignorance” but

about a fundamental concept of not leaking information

Interactive proofs
Actors:
Peggy (Prover): tries to convince Victor about ®

Victor (Verifier): check whether sentence @ is true, possible outputs: Accept,
Reject

Completeness:
if @ is true, and Peggy and Victor follow the protocol, then output=Accept
Soundness:

if @ is false, and Victor follows the protocol, then output=Re ject with probability
at least p (Peggy may attempt to cheat!)

Zero-knowledge property - informally:

Victor should not learn anything except that ® is true

— seems to be impossible, Peggy and Victor exchange some information!

Example of a protocol where ZK is violated
challenge-response authentication:

1. Verifier chooses r at random

2. Prover creates a signature s of r

3. Verifier checks s with the public key P of Alice

® ="Prover knows the secret key corresponding to P’

Completeness: ok
Soundness: based on unforgeability of signatures
ZKP: no! Verifier learns s that is unavailable without executing the protocol.

Verifier gains some knowledge from Prover!

The situation for Schnorr Identification

1.
2.
3.
4

5.

Alice chooses k at random, 7 := ¢"
Alice sends r to Verifier
Verifier chooses ¢ at random and sends to Alice

Alice calculates s:=k — x - ¢ mod ¢ and sends s to Verifier

Verifier checks that ¢°- PK¢=r

Question: does a protocol transcript (', ¢, s) HELP to break x7

Answer: No: the attacker could create himself the triples (r, ¢, s) with exactly
the same probability

(a weaker version would suffice: with probability distribution that is not distinguish-
able from the real one)

Simulator concept for computational Zero Knowledge

for each Verifier V* there is a simulator S

such that the transcripts generated with S'on V* are computationally indistinguish-
able from

the transcripts generated during real executions with V'*

Simulator concept for perfect Zero Knowledge

for each Verifier V* there is a simulator S

such that the transcripts generated with S'on /" have exactly the same probability
distribution as

the transcripts generated during real executions with V'*

Example: graph isomorphism
sentence ®: Peggy knows an isomorphism 7 between graphs Gy and G,

key issue: showing the isomorphism by Peggy would violate ZK as graph isomor-
phism is a hard problem and S cannot simulate it

Protocol (“left or right”)
I. Peggy creates a graph GG’ together with an isomorphism p: Go— G’
ii. given G’, Victor chooses bit b at random

iii. if b=0, then Peggy shows isomorphism between Gy and G’ (thatis, p), else
she shows an isomorphism between G’ and Gy (7 - p™1)

Simulator for perfect Zero Knowledge

|. choose b’ at random

. create isomorphism p: Go— G’ and G’, it b'=0,
lll. create isomorphism p: G; — G’ and G, if b'=1
IV. simulate V" until it presents b

V. if b=10' then output transcript (G’ b, p), else goto I.

Amplifying soundness

— if the correct output is Reject, then the protocol outputs Reject with pbb>p

— sometimes p <1, e.g. p:%

— probability amplification: run the protocol k times, Reject if at least one run
yields Reject

— error probability (1 — p)¥

Honest-verifier zero-knowledge

subtle issues: simulation concerns a verifier that follows the protocol

the situation of possibly dishonest verifier may be different

Proof-of-Knowledge

Language L,

— for each v € Lthere is a witness w such that A(v,w)=v €L

— relation A is easy to evaluate

example

L={(g", h*):x < q} (equality of discrete logarithms)

witness for (g", h") is w

Zero-knowledge proof of Knowledge

special soundness via knowledge extractor:

if Peggy can run a protocol with (possibly dishonest) Victor, then she may run
extractor to learn the witness

Proof of Knowledge: linear relation for discrete logarithms
Peggy knows 1, = ¢;* and ys = g5 such that a2 + as- 29 =0 mod ¢
Peggy has to prove that the discrete logs satisfy this equation. How?

— Peggy can prove that she knows log,,7; (Schnorr identification protocol),...

— how to prove the equality?

— it g1 = go=itis easy, if log,,gs is known = 77

Protocol
I. Peggy chooses vy v9 such that a; - v + as - v =0 mod g
ii. Peggy shows t1: =¢"*, t5: =g"2

iii. Verifier chooses ¢ at random

iv. Peggy calculates 1 :=v; —21-¢cmod q , ro:=v9 — x9-cmod q

v. Verifier checks that g;'- yf=1t; and ¢5* - y5=1t»

and a;-7m1+as-ro=">0-(1—¢) modq

Protocol completeness

i. Peggy chooses vy v such that a;-v; 4+ as-ve=0mod q
ii. Peggy shows t1: =g, t5: =g"?
iii. Verifier chooses ¢ at random
iv. Peggy calculates r1:=v1 —x1-cmod q , ro:=vy — - cmodq
v. Verifier checks that ¢g1'-y{=1%1 and g5°- yS=1>

and ay-r1+ax-r2=>b-(1—c¢) modq

Extractor

i. Peggy chooses vy v such that a;-v; + as-ve=0mod q

ii. Peggy shows t1: =g to: =g
iii. Verifier chooses ¢ at random
iv. Peggy calculates r1:=v1 —x1-cmod q , ro:=vs — - cmod q
v. Verifier checks that ¢g7'-y{=1%1 and ¢5°- yS=1>

and a1 -r14+az-ro=0b-(1—c¢) modgq

e. Run it twice with the same ¢4, 5

/

o ri—ri=(vi—21¢)—(vy—x1-¢)=21- (' =)

e. similarly for x5

Sigma protocols

a frequent form:

Peggy: commitment
Victor: challenge
Peggy: response

Victor: test and Accept/Reject

Proofs of knowledge for more complicated statements

e.g. | know x such that ¢” =1y and this x does not satisfy h* =2z "

(this is “Proof-of-knowledge of inequality of discrete logarithms")

commitment: (ag, ai, a2) = (2"h~""", y" g™, 2" h"?) for random 7,71, 79
challenge: ¢
response: (t1to) =(ri+c-r,ro—c-r-x)

test: y"'g2=ay, z"h"2=ay a5 and apF£1

commitment: (ag, a1, as2) = (2"h~""" y"1g"2, 2" h"?) for random 7,771,179
challenge: ¢
response: (t1to)=(ri+c-r,ro—c-r-x)

test: y''g2=aq, zU'h'2=uay-ayand ap#1

Extractor

AND proofs

run two sigma protocols independently in parallel
Peggy: commitment 1, commitment 2

Victor: common challenge

Peggy: response 1, response 2

Victor: test 1, test 2

Example: “proof of knowledge of discrete log of y and of discrete log of 2"

OR proof — typical trick for Sigma protocols
Peggy knows witness for sentence 2, but not for sentence 1:
I. commitment:
a. Peggy runs simulator for sentence 1, gets transcript (aq, ¢1,71)
b. Peggy creates a challenge a, for sentence 2
commitemnt is (a1 as)
ii. challenge: ¢
iii. Peggy splits ¢: ¢ = ¢y + ¢, creates response 15 for (ag, 62),
final response (cy71.co79)

iv. Victor separately checks (71.¢1)and (r2.¢2), and that c=c¢; + ¢

NIZKP - Non-Interactive Zero-Knowledge Proof

replace the challenge by hash of the commitment

(the same idea as Fiat-Shamir heuristics but with no message to be signed under
hash)

