CRYPTOGRAPHY LECTURE, 2022

Computer Science and Algorithmics, PWr

Mirosław Kutyłowski

Zero Knowledge Protocols

we are not talking about "ignorance" but

about a fundamental concept of not leaking information

Interactive proofs

Actors:

Peggy (Prover): tries to convince Victor about Φ

Victor (Verifier): check whether sentence Φ is true, possible outputs: Accept, Reject

Completeness:

if Φ is true, and Peggy and Victor follow the protocol, then <code>output=Accept</code>

Soundness:

if Φ is false, and Victor follows the protocol, then output=Reject with probability at least p (Peggy may attempt to cheat!)

Zero-knowledge property - informally:

Victor should not learn anything except that Φ is true

- seems to be impossible, Peggy and Victor exchange some information!

Example of a protocol where ZK is violated

challenge-response authentication:

- 1. Verifier chooses r at random
- 2. Prover creates a signature \boldsymbol{s} of \boldsymbol{r}
- 3. Verifier checks \boldsymbol{s} with the public key \boldsymbol{P} of Alice

 $\Phi=\ensuremath{^{\prime\prime}}\xspace^{\prime\prime}\xspace^{\prime\prime}$ rover knows the secret key corresponding to $P^{\prime\prime}$

Completeness: ok

Soundness: based on unforgeability of signatures

ZKP: no! Verifier learns *s* that is unavailable without executing the protocol. Verifier gains some knowledge from Prover!

The situation for Schnorr Identification

- 1. Alice chooses k at random, $r \mathop{:}= g^k$
- 2. Alice sends r to Verifier
- 3. Verifier chooses c at random and sends to Alice
- 4. Alice calculates $s := k x \cdot c \mod q$ and sends s to Verifier
- 5. Verifier checks that $g^s \cdot PK^c = r$
- **Question:** does a protocol transcript (r, c, s) HELP to break x?

Answer: No: the attacker could create himself the triples (r,c,s) with exactly the same probability

(a weaker version would suffice: with probability distribution that is not distinguishable from the real one)

Simulator concept for computational Zero Knowledge

for each Verifier V^{\ast} $\$ there is a simulator S

such that the transcripts generated with $S \, {\rm on} \, V^*$ are computationally indistinguishable from

the transcripts generated during real executions with V^{\ast}

Simulator concept for perfect Zero Knowledge

for each Verifier V^{\ast} $\;$ there is a simulator S

such that the transcripts generated with $S \, {\rm on} \, V^*$ have exactly the same probability distribution as

the transcripts generated during real executions with V^{\ast}

Example: graph isomorphism

sentence Φ : Peggy knows an isomorphism π between graphs G_0 and G_1

key issue: showing the isomorphism by Peggy would violate $\,$ ZK as graph isomorphism is a hard problem and S cannot simulate it

Protocol ("left or right")

i. Peggy creates a graph G' together with an isomorphism $\rho: G_0 \to G'$

ii. given G', Victor chooses bit b at random

iii. if b = 0, then Peggy shows isomorphism between G_0 and G' (that is, ρ), else she shows an isomorphism between G' and G_1 ($\pi \cdot \rho^{-1}$)

Simulator for perfect Zero Knowledge

- I. choose b' at random
- II. create isomorphism $\rho: G_0 \to G'$ and G', if b'=0,
- III. create isomorphism $\rho: G_1 \to G'$ and G', if b'=1
- IV. simulate V^* until it presents b
- V. if b = b' then output transcript (G', b, ρ) , else goto I.

Amplifying soundness

- $-\,$ if the correct output is Reject, then the protocol outputs Reject with pbb ${\geq}p$
- sometimes p < 1, e.g. $p = \frac{1}{2}$
- $-\,$ probability amplification: run the protocol k times, Reject if at least one run yields Reject
 - \rightarrow error probability $(1-p)^k$

Honest-verifier zero-knowledge

subtle issues: simulation concerns a verifier that follows the protocol

the situation of possibly dishonest verifier may be different

Proof-of-Knowledge

Language L,

- for each $v \in L$ there is a witness w such that $A(v, w) \Rightarrow v \in L$
- relation A is easy to evaluate

example

 $L = \{(g^x, h^x): x < q\}$ (equality of discrete logarithms)

witness for $\left(g^{w},h^{w}\right)$ is w

Zero-knowledge proof of Knowledge

special soundness via knowledge extractor:

if Peggy can run a protocol with (possibly dishonest) Victor, then she may run extractor to learn the witness

Proof of Knowledge: linear relation for discrete logarithms

Peggy knows $y_1 = g_1^{x_1}$ and $y_2 = g_2^{x_2}$ such that $a_1 \cdot x_1 + a_2 \cdot x_2 = b \mod q$

Peggy has to prove that the discrete logs satisfy this equation. How?

- Peggy can prove that she knows $\log_{g_1} y_1$ (Schnorr identification protocol),...
- how to prove the equality?
- if $g_1 = g_2 \Rightarrow$ it is easy, if $\log_{g_1} g_2$ is known \Rightarrow ??

Protocol

- i. Peggy chooses v_1, v_2 such that $a_1 \cdot v_1 + a_2 \cdot v_2 = b \mod q$
- ii. Peggy shows $t_1:=g^{v_1}, t_2:=g^{v_2}$
- iii. Verifier chooses \boldsymbol{c} at random
- iv. Peggy calculates $r_1 := v_1 x_1 \cdot c \mod q$, $r_2 := v_2 x_2 \cdot c \mod q$
- v. Verifier checks that $g_1^{r_1} \cdot y_1^c = t_1$ and $g_2^{r_2} \cdot y_2^c = t_2$

and $a_1 \cdot r_1 + a_2 \cdot r_2 = b \cdot (1 - c) \mod q$

Protocol completeness

- i. Peggy chooses v_1, v_2 such that $a_1 \cdot v_1 + a_2 \cdot v_2 = b \mod q$
- ii. Peggy shows $t_1:=g^{v_1}, t_2:=g^{v_2}$
- iii. Verifier chooses c at random
- iv. Peggy calculates $r_1\!:=\!v_1\!-\!x_1\!\cdot\!c \bmod q$, $r_2\!:=\!v_2\!-\!x_2\!\cdot\!c \bmod q$
- v. Verifier checks that $g_1^{r_1} \cdot y_1^c = t_1$ and $g_2^{r_2} \cdot y_2^c = t_2$

and $a_1 \cdot r_1 + a_2 \cdot r_2 = b \cdot (1 - c) \mod q$

Extractor

- i. Peggy chooses v_1, v_2 such that $a_1 \cdot v_1 + a_2 \cdot v_2 = b \mod q$
- ii. Peggy shows $t_1:=g^{v_1}, t_2:=g^{v_2}$
- iii. Verifier chooses c at random
- iv. Peggy calculates $r_1\!:=\!v_1\!-\!x_1\!\cdot\!c \bmod q$, $r_2\!:=\!v_2\!-\!x_2\!\cdot\!c \bmod q$
- v. Verifier checks that $g_1^{r_1} \cdot y_1^c = t_1$ and $g_2^{r_2} \cdot y_2^c = t_2$

and $a_1 \cdot r_1 + a_2 \cdot r_2 = b \cdot (1 - c) \mod q$

•. Run it twice with the same t_1 , t_2

•.
$$r_1 - r'_1 = (v_1 - x_1 \cdot c) - (v_1 - x_1 \cdot c') = x_1 \cdot (c' - c)$$

•. similarly for x_2

Sigma protocols

a frequent form:

- Peggy: commitment
- Victor: challenge
- Peggy: response
- Victor: test and Accept/Reject

Proofs of knowledge for more complicated statements

e.g. "I know x such that $g^x = y$ and this x does not satisfy $h^x = z$ "

(this is "Proof-of-knowledge of inequality of discrete logarithms")

commitment: $(a_0, a_1, a_2) = (z^r h^{-r \cdot x}, y^{r_1} g^{r_2}, z^{r_1} h^{r_2})$ for random r, r_1, r_2 challenge: c

response: $(t_{1}, t_{2}) = (r_{1} + c \cdot r, r_{2} - c \cdot r \cdot x)$

test: $y^{t_1}g^{t_2} = a_1$, $z^{t_1}h^{t_2} = a_2 \cdot a_0^{-c}$, and $a_0 \neq 1$

commitment: $(a_0, a_1, a_2) = (z^r h^{-r \cdot x}, y^{r_1} g^{r_2}, z^{r_1} h^{r_2})$ for random r, r_1, r_2

challenge: c

response: $(t_1, t_2) = (r_1 + c \cdot r, r_2 - c \cdot r \cdot x)$

test: $y^{t_1}g^{t_2} = a_1$, $z^{t_1}h^{t_2} = a_2 \cdot a_0^{-c}$, and $a_0 \neq 1$

Extractor

AND proofs

run two sigma protocols independently in parallel

Peggy: commitment 1, commitment 2

Victor: common challenge

Peggy: response 1, response 2

Victor: test 1, test 2

Example: "proof of knowledge of discrete log of y and of discrete log of z"

OR proof – typical trick for Sigma protocols

Peggy knows witness for sentence 2, but not for sentence 1:

i. commitment:

a. Peggy runs simulator for sentence 1, gets transcript (a_1, c_1, r_1)

b. Peggy creates a challenge a_2 for sentence 2

commitemnt is $(a_{1,}a_{2})$

- ii. challenge: c
- iii. Peggy splits $c: c = c_1 + c_2$, creates response r_2 for (a_2, c_2) , final response (c_1, r_1, c_2, r_2)

iv. Victor separately checks (r_1,c_1) and (r_2,c_2) , and that $c = c_1 + c_2$

NIZKP - Non-Interactive Zero-Knowledge Proof

replace the challenge by hash of the commitment

(the same idea as Fiat-Shamir heuristics but with no message to be signed under hash)