CRYPTOGRAPHY LECTURE, 2022

Computer Science and Algorithmics, PWr

Mirosław Kutyłowski

Zero Knowledge Protocols

we are not talking about "ignorance" but

about a fundamental concept of not leaking information

Interactive proofs

Actors:

Peggy (Prover): tries to convince Victor about Φ

Victor (Verifier): check whether sentence Φ is true, possible outputs: Accept, Reject

Completeness:

if Φ is true, and Peggy and Victor follow the protocol, then output=Accept

Soundness:

if Φ is false, and Victor follows the protocol, then output=Reject with probability at least *p* (Peggy may attempt to cheat!)

Zero-knowledge property - informally:

Victor should not learn anything except that Φ is true

- seems to be impossible, Peggy and Victor exchange some information!

Example of a protocol where ZK is violated

challenge-response authentication:

- 1. Verifier chooses *r* at random
- 2. Prover creates a signature *s* of *r*
- 3. Verifier checks *s* with the public key *P* of Alice

 Φ = "Prover knows the secret key corresponding to P "

Completeness: ok

Soundness: based on unforgeability of signatures ZKP: no! Verifier learns *s* that is unavailable without executing the protocol. Verifier gains some knowledge from Prover!

The situation for Schnorr Identification

- 1. Alice chooses k at random, $r := g^k$
- 2. Alice sends *r* to Verifier
- 3. Verifier chooses *c* at random and sends to Alice
- 4. Alice calculates *s* := *k − x c* mod *q* and sends *s* to Verifier
- 5. Verifier checks that $g^s \cdot \text{PK}^c = r$
- Question: does a protocol transcript (*r; c; s*) HELP to break *x*?

Answer: No: the attacker could create himself the triples (*r; c; s*) with exactly the same probability

(a weaker version would suffice: with probability distribution that is not distinguish able from the real one)

Simulator concept for computational Zero Knowledge

for each Verifier V^* there is a simulator S

such that the transcripts generated with $S\,{\rm on}\,V^*$ are computationally indistinguishable from

the transcripts generated during real executions with V^{\ast}

Simulator concept for perfect Zero Knowledge

for each Verifier V^* there is a simulator S

such that the transcripts generated with $S\,{\rm on}\,V^*$ have exactly $\,$ the same probability distribution as

the transcripts generated during real executions with *V*

Example: graph isomorphism

sentence Φ : Peggy knows an isomorphism π between graphs G_0 and G_1

key issue: showing the isomorphism by Peggy would violate ZK as graph isomor phism is a hard problem and *S* cannot simulate it

Protocol ("left or right")

i. Peggy creates a graph G' together with an isomorphism $\rho: G_0 \rightarrow G'$

ii. given G' , Victor chooses bit b at random

iii. if $b = 0$, then Peggy shows isomorphism between G_0 and G' (that is, ρ), else she shows an isomorphism between G' and G_1 ($\pi \cdot \rho^{-1}$)

Simulator for perfect Zero Knowledge

- I. choose b' at random
- II. create isomorphism $\rho\colon G_0 {\,\rightarrow\,} G'$ and G' , if $b' {=} 0,$
- III. create isomorphism $\rho: G_1 \rightarrow G'$ and *G'*, if *b'*=1
- IV. simulate V^* until it presents b
- ${\sf V}.$ if $b\!=\!b'$ then output transcript (G',b,ρ) , else goto ${\sf I}.$

Amplifying soundness

- *−* if the correct output is Reject, then the protocol outputs Reject with pbb \geq p
- *−* sometimes $p < 1$, e.g. $p = \frac{1}{2}$ 2
- *−* probability amplification: run the protocol *k* times, Reject if at least one run yields Reject
	- \rightarrow error probability $(1-p)^k$

Honest-verifier zero-knowledge

subtle issues: simulation concerns a verifier that follows the protocol

the situation of possibly dishonest verifier may be different

Proof-of-Knowledge

Language *L*,

- *→* for each $v \in L$ there is a witness w such that $A(v, w) \Rightarrow v \in L$
- *−* relation *A* is easy to evaluate

example

 $L = \{(g^x, h^x) \text{: } x < q\}$ (equality of discrete logarithms)

witness for (g^w,h^w) is w

Zero-knowledge proof of Knowledge

special soundness via knowledge extractor:

if Peggy can run a protocol with (possibly dishonest) Victor, then she may run extractor to learn the witness

Proof of Knowledge: linear relation for discrete logarithms

Peggy knows $y_1 = g_1^{x_1}$ and $y_2 = g_2^{x_2}$ such that $a_1 \cdot x_1 + a_2 \cdot x_2 = b \bmod q$

Peggy has to prove that the discrete logs satisfy this equation. How?

- *−* Peggy can prove that she knows log*^g*1*y*¹ (Schnorr identification protocol),...
- *−* how to prove the equality?
- *−* if $g_1 = g_2 \Rightarrow$ it is easy, if $\log_{g_1} g_2$ is known \Rightarrow ??

Protocol

- i. Peggy chooses v_1,v_2 such that $a_1 \cdot v_1 + a_2 \cdot v_2 = b \bmod q$
- ii. Peggy shows t_1 : $=g^{v_1}$, t_2 : $=g^{v_2}$
- iii. Verifier chooses *c* at random
- iv. Peggy calculates $r_1 := v_1 x_1 \cdot c \mod q$, $r_2 := v_2 x_2 \cdot c \mod q$
- y_1 . Verifier checks that $g_1^{r_1} \cdot y_1^c = t_1$ and $g_2^{r_2} \cdot y_2^c = t_2$

and $a_1 \cdot r_1 + a_2 \cdot r_2 = b \cdot (1 - c) \mod q$

Protocol completeness

- i. Peggy chooses v_1 , v_2 such that $a_1 \cdot v_1 + a_2 \cdot v_2 = b \mod q$
- ii. Peggy shows $t_1\text{:} = \!g^{v_1}\!, t_2\text{:} = \!g^{v_2}$
- iii. Verifier chooses *c* at random
- iv. Peggy calculates $r_1 := v_1 x_1 \cdot c \mod q$, $r_2 := v_2 x_2 \cdot c \mod q$
- v. Verifier checks that $g_1^{r_1} \cdot y_1^c = t_1$ and $g_2^{r_2} \cdot y_2^c = t_2$

and $a_1 \cdot r_1 + a_2 \cdot r_2 = b \cdot (1 - c) \mod q$

Extractor

- i. Peggy chooses v_1 , v_2 such that $a_1 \cdot v_1 + a_2 \cdot v_2 = b \mod q$
- ii. Peggy shows $t_1\text{:} = \!g^{v_1}\!, t_2\text{:} = \!g^{v_2}$
- iii. Verifier chooses *c* at random
- iv. Peggy calculates $r_1 := v_1 x_1 \cdot c \mod q$, $r_2 := v_2 x_2 \cdot c \mod q$
- v. Verifier checks that $g_1^{r_1} \cdot y_1^c = t_1$ and $g_2^{r_2} \cdot y_2^c = t_2$

and $a_1 \cdot r_1 + a_2 \cdot r_2 = b \cdot (1 - c) \mod q$

• Run it twice with the same t_1 , t_2

•.
$$
r_1 - r'_1 = (v_1 - x_1 \cdot c) - (v_1 - x_1 \cdot c') = x_1 \cdot (c' - c)
$$

 \bullet . similarly for x_2

Sigma protocols

a frequent form:

- Peggy: commitment
- Victor: challenge
- Peggy: response
- Victor: test and Accept/Reject

Proofs of knowledge for more complicated statements

e.g. "I know x such that $g^x \!=\! y$ and this x does not satisfy $h^x \!=\! z$ "

(this is "Proof-of-knowledge of *inequality* of discrete *logarithms*")

commitment: $(a_0, a_1, a_2) = (z^r h^{-r \cdot x}, y^{r_1} g^{r_2}, z^{r_1} h^{r_2})$ for random r, r_1, r_2 challenge: *c*

 r **esponse:** $(t_1, t_2) = (r_1 + c \cdot r, r_2 - c \cdot r \cdot x)$

test: $y^{t_1}g^{t_2} = a_1$, $z^{t_1}h^{t_2} = a_2 \cdot a_0^{-c}$, and $a_0 \neq 1$

commitment: $(a_0,a_1,a_2)\,{=}\,(z^rh^{-r\cdot x},y^{r_1}\!g^{r_2},z^{r_1}h^{r_2})$ for random r,r_1,r_2

challenge: *c*

 $response:$ $(t_1,t_2) = (r_1 + c \cdot r, r_2 - c \cdot r \cdot x)$

test: $y^{t_1}g^{t_2} = a_1$, $z^{t_1}h^{t_2} = a_2 \cdot a_0^{-c}$, and $a_0 \neq 1$

Extractor

AND proofs

run two sigma protocols independently in parallel

Peggy: commitment 1, commitment 2

Victor: common challenge

Peggy: response 1, response 2

Victor: test 1, test 2

Example: "proof of knowledge of discrete log of *y* and of discrete log of z"

OR proof $-$ typical trick for Sigma protocols

Peggy knows witness for sentence 2, but not for sentence 1:

i. commitment:

a. Peggy runs simulator for sentence 1, gets transcript (a_1, c_1, r_1)

b. Peggy creates a challenge a_2 for sentence 2

commitemnt is (a_1,a_2)

- ii. challenge: *c*
- iii. Peggy splits $c: c = c_1 + c_2$, creates response r_2 for (a_2, c_2) , final response (c_1, r_1, c_2, r_2)
- iv. Victor separately checks (r_1, c_1) and (r_2, c_2) , and that $c = c_1 + c_2$

NIZKP - Non-Interactive Zero-Knowledge Proof

replace the challenge by hash of the commitment

(the same idea as Fiat-Shamir heuristics but with no message to be signed under hash)