
CRYPTOGRAPHY LECTURE, 2022

Computer Science and Algorithmics, PWr

Mirosªaw Kutyªowski

Zero Knowledge Protocols

we are not talking about �ignorance� but

about a fundamental concept of not leaking information



Interactive proofs

Actors:

Peggy (Prover): tries to convince Victor about �

Victor (Verifier): check whether sentence � is true, possible outputs: Accept,
Reject

Completeness:

if � is true, and Peggy and Victor follow the protocol, then output=Accept

Soundness:

if � is false, and Victor follows the protocol, then output=Reject with probability
at least p (Peggy may attempt to cheat!)



Zero-knowledge property - informally:

Victor should not learn anything except that � is true

� seems to be impossible, Peggy and Victor exchange some information!



Example of a protocol where ZK is violated
challenge-response authentication:

1. Verifier chooses r at random

2. Prover creates a signature s of r

3. Verifier checks s with the public key P of Alice

�= �Prover knows the secret key corresponding to P �

Completeness: ok

Soundness: based on unforgeability of signatures

ZKP: no! Verifier learns s that is unavailable without executing the protocol.

Verifier gains some knowledge from Prover!



The situation for Schnorr Identification
1. Alice chooses k at random, r := gk

2. Alice sends r to Verifier

3. Verifier chooses c at random and sends to Alice

4. Alice calculates s := k−x � cmod q and sends s to Verifier

5. Verifier checks that gs �PKc= r

Question: does a protocol transcript (r; c; s)HELP to break x?

Answer: No: the attacker could create himself the triples (r; c; s) with exactly
the same probability

(a weaker version would suffice: with probability distribution that is not distinguish-
able from the real one)



Simulator concept for computational Zero Knowledge

for each Verifier V � there is a simulator S

such that the transcripts generated with S onV � are computationally indistinguish-
able from

the transcripts generated during real executions with V �



Simulator concept for perfect Zero Knowledge

for each Verifier V � there is a simulator S

such that the transcripts generated with S onV � have exactly the same probability
distribution as

the transcripts generated during real executions with V �



Example: graph isomorphism

sentence �: Peggy knows an isomorphism � between graphs G0 and G1

key issue: showing the isomorphism by Peggy would violate ZK as graph isomor-
phism is a hard problem and S cannot simulate it

Protocol (�left or right�)

i. Peggy creates a graph G0 together with an isomorphism �:G0!G0

ii. given G0, Victor chooses bit b at random

iii. if b=0, then Peggy shows isomorphism between G0 and G0 (that is; �), else
she shows an isomorphism between G0 and G1 (� � �−1)



Simulator for perfect Zero Knowledge

I. choose b 0 at random

II. create isomorphism �:G0!G0 and G0, if b 0=0;

III. create isomorphism �:G1!G0 and G0, if b'=1

IV. simulate V � until it presents b

V. if b= b 0 then output transcript (G0; b; �), else goto I.



Amplifying soundness

− if the correct output is Reject, then the protocol outputs Reject with pbb�p

− sometimes p< 1; e.g. p= 1

2

− probability amplification: run the protocol k times, Reject if at least one run
yields Reject

! error probability (1− p)k



Honest-verifier zero-knowledge

subtle issues: simulation concerns a verifier that follows the protocol

the situation of possibly dishonest verifier may be different



Proof-of-Knowledge

Language L,

− for each v 2L there is a witness w such that A(v; w)) v 2L

− relation A is easy to evaluate

example

L= f(gx; hx):x< qg (equality of discrete logarithms)

witness for (gw; hw) is w



Zero-knowledge proof of Knowledge

special soundness via knowledge extractor:

if Peggy can run a protocol with (possibly dishonest) Victor, then she may run
extractor to learn the witness



Proof of Knowledge: linear relation for discrete logarithms

Peggy knows y1= g1
x1 and y2= g2

x2 such that a1 �x1+ a2 �x2= bmod q

Peggy has to prove that the discrete logs satisfy this equation. How?

− Peggy can prove that she knows logg1y1 (Schnorr identification protocol), . . .

− how to prove the equality?

− if g1= g2) it is easy, if logg1g2 is known ) ??



Protocol

i. Peggy chooses v1;v2 such that a1 � v1+ a2 � v2= bmod q

ii. Peggy shows t1: =gv1; t2: =gv2

iii. Verifier chooses c at random

iv. Peggy calculates r1 := v1−x1 � cmod q , r2 := v2−x2 � cmod q

v. Verifier checks that g1
r1 � y1c= t1 and g2

r2 � y2c= t2

and a1 � r1+ a2 � r2= b � (1− c) mod q



Protocol completeness

i. Peggy chooses v1;v2 such that a1 � v1+ a2 � v2= bmod q

ii. Peggy shows t1: =gv1; t2: =gv2

iii. Verifier chooses c at random

iv. Peggy calculates r1 := v1−x1 � cmod q , r2 := v2−x2 � cmod q

v. Verifier checks that g1
r1 � y1c= t1 and g2

r2 � y2c= t2

and a1 � r1+ a2 � r2= b � (1− c) mod q



Extractor

i. Peggy chooses v1;v2 such that a1 � v1+ a2 � v2= bmod q

ii. Peggy shows t1: =gv1; t2: =gv2

iii. Verifier chooses c at random

iv. Peggy calculates r1 := v1−x1 � cmod q , r2 := v2−x2 � cmod q

v. Verifier checks that g1
r1 � y1c= t1 and g2

r2 � y2c= t2

and a1 � r1+ a2 � r2= b � (1− c) mod q

�. Run it twice with the same t1, t2

�. r1− r10= (v1−x1 � c)− (v1−x1 � c 0)=x1 � (c 0− c)

�. similarly for x2



Sigma protocols

a frequent form:

Peggy: commitment

Victor: challenge

Peggy: response

Victor: test and Accept/Reject



Proofs of knowledge for more complicated statements

e.g. �I know x such that gx= y and this x does not satisfy hx= z �

(this is �Proof-of-knowledge of inequality of discrete logarithms�)

commitment: (a0; a1; a2)= (zrh−r�x; yr1gr2; zr1hr2) for random r; r1; r2

challenge: c

response: (t1;t2)= (r1+ c � r; r2− c � r �x)

test: yt1gt2= a1, zt1ht2= a2 � a0−c; and a0=/ 1



commitment: (a0; a1; a2)= (zrh−r�x; yr1gr2; zr1hr2) for random r; r1; r2

challenge: c

response: (t1;t2)= (r1+ c � r; r2− c � r �x)

test: yt1gt2= a1, zt1ht2= a2 � a0−c; and a0=/ 1

Extractor



AND proofs

run two sigma protocols independently in parallel

Peggy: commitment 1, commitment 2

Victor: common challenge

Peggy: response 1, response 2

Victor: test 1, test 2

Example: �proof of knowledge of discrete log of y and of discrete log of z�



OR proof � typical trick for Sigma protocols

Peggy knows witness for sentence 2, but not for sentence 1:

i. commitment:

a. Peggy runs simulator for sentence 1, gets transcript (a1; c1; r1)

b. Peggy creates a challenge a2 for sentence 2

commitemnt is (a1;a2)

ii. challenge: c

iii. Peggy splits c: c= c1+ c2, creates response r2 for (a2; c2),

final response (c1;r1;c2;r2)

iv. Victor separately checks (r1;c1) and (r2;c2); and that c= c1+ c2



NIZKP - Non-Interactive Zero-Knowledge Proof

replace the challenge by hash of the commitment

(the same idea as Fiat-Shamir heuristics but with no message to be signed under
hash)


