CRYPTOGRAPHY LECTURE, 2023
Master Level, PWr
Mirostaw Kutyfowski

Zero Knowledge

Challenges for a cryptographic protocol based on a secret key sk:

Problem 1

e each time when a key is used then some information about sk may be leaked

e how to make sure that gradually sk becomes not that “private?

Problem 2
e a protocol execution may be used for more than intended

e how to prove that no extra protocol is executed so that one participant is not aware of it

Example: Challenge+response authentication = blind signature

Original protocol:

Alice holds private RSA key d , Bob holds the corresponding ¢ and modulus n
— Alice shows that show holds d:

I. Bob chooses 7 at random

ii. Alice computes c¢:=7r?modn

iil. Bob checks that ¢®=r modn

Corrupted execution (Bob is malicious)

i. Bob chooses a message h = Hash(padding(m)) and random u

ii. Bob calculates: 7:=h - u° modn and presents r as the random challenge
iii. Alice computes c:=7r?modn

iv. Bob computes s:=c¢/umodn

note that

s=pLly=(h-uS = h%(uS® fr=h2"uao=h? modn

voila! Bob has the signature of Alice under m

Consequence: “key usage - if for “authentication”, then never for “signing”

Blind signature — non-malicious application:

the mechanism of Privacy Pass

— Issuer signs blinded tokens presented by the client

— the client unblinds the signatures ...

. and presents them instead of solving Captchas on third party webpages

token is a proof that it comes from a client

privacy protected against the Issuer

Example 2: Schnorr authentication converted to proof-of-presence
Original protocol:
Alice: secret key SK =z, public key PK = ¢*
i. Alice chooses k at random, r:= ¢*
ii. Alice sends r to Verifier
iii. Verifier chooses ¢ at random and sends to Alice
iv. Alice calculates s:=k — z- ¢ mod ¢ and sends s to Verifier

v. Verifier checks that ¢°- PK¢=r
Malicious: c:=Hash(z) where z:= Signgverifier)() :

— Alice cannot detect that ¢ has not be chosen at random

— Verifier can show (7, s)and z to prove that he has interacted with Alice

Simultability

Alice holds private key sk and authenticates against Bob
Bob cannot create a proof that he has interacted with Alice:
no matter how clever are the challenges of Bob,

... Bob can create the responses of Alice by himself

Consequence:
each transcript of interaction can be simulated and therefore

useless as a proof of interaction when presented by Bob to a third person

Password authentication example

situation:

— Alice knows a password

— a smartcard of Alice holds 7 as well

— smartcard establishes a session with a reader iff the reader proves to know 7
problems:

— 7 must not be sent in cleartext

— ... passive (offline) and active attacks should not reveal =

— no proof-of-presence can be created by the reader

Password Authenticated Key Exchange (PAKE) protocol
e session key established iff the same password used on both sides

e password and session key are secure

example: PACE protocol (obligatory on European personal ID documents, on passports)

PACE executed with password 7
Phase 0:
i. card and reader: compute symmetric key K, = Hash(x|0)
ii. card: choose s at random, send z =Encg _(s) to the reader

iii. reader: s:=Decg_(2)

Phase 1: (Diffie-Hellman Key Exchange)

I. reader: choose r at random, Xp:= ¢”2, send Xp to the reader
i. card: choose 74 at random, X 4:= g™, send X 4 to the reader
iii. reader: AL, G i (R
iv. card: RE= e g e

Phase 2: (Diffie-Hellman Key Exchange based on password dependant §)

I. reader: choose yp at random, Y5 := gY?, send Y3 to the reade
i. card: choose y,4 at random, Y, := g¥4, send Y, to the reader
lii. reader: RSN s
iv. card: e Ui
v. both: derive Kyiac and K, via hashing from K

Phase 3: (proof of key possesion)

I. reader: send Tp:= MAC(Kyac, Ya) to card
i. card: abort if T’z invalid
ii. card: send Ty := MAC(Kpyac, YB) to reader
iv. reader: abort if 7’4 invalid

Start session

all messages encrypted with K,

10

Simulation (reader pretending to talk with the card)
Phase O:

. reader: K =Hash(r||0)
i. 'card”: send z chosen at random
iii. reader: s:=Decg (2)

Phase 1: (Diffie-Hellman Key Exchange)

I. reader: choose z5, Xp:= ¢*2, send Xp to the reader
i. 'card”: send X 4 chosen at random
iii. reader: A e ey A
Ve==care = —

11

Phase 2: (Diffie-Hellman Key Exchange based on password dependant §)

I. reader: choose yp, Yp:= ¢?, send Yp
i. "card’: send Y4 chosen at random
iii. reader: P OB
iv. "card”: —
v. reader: derive Kyjac and Ky

Phase 3: (proof of key possesion)

I. reader: send Tp:= MAC(Kyac, Ya)
i. "card’: abort if T’z invalid
ii. "card™: send Ty := MAC(Knyac, YB)
iv. reader: abort if 74 invalid

Observation: exactly the same probability distribution as in the case of real inter-
actions

2

Session confidentiality

how to find out that an observer will not learn anything about the data exchanged after
establishing Kg,. 7

maybe some information will be leaked

Proof method??

13

Abdalla model

two models considered:
e real model: protocol executed as described, session key K established
e artificial model: protocol executed as described, but finally K replaced by a random key
Game:
I. run some number of instances of real model (adversary involved, keys revealed, etc)
Ii. choose b at random, run
— real protocol, if b=0
— artificial protocol, if b=1
iii. again run some instances like in point (i)
iv. challenger reveals the session key K from point (ii)

v. adversary wins if guesses b

14

Observations

1. if the artificial protocol is run, then the adversary cannot learn anything about the work-
load data from key agreement (obvious - key K is unrelated)

2. for the game: one can add the session created with & and run an adversary that wants
to break session confidentiality

if adversary succeeds, then we conclude that it is rather a real session
So

it suffices to show that the adversary has a negligible advantage to win the game

S

How is it for PACE (passive adversary)?

can the adversary detect that master key K has been replaced with a random key?

that is:

K is random instead of being the solution for DH tuple ¢, Y4, Y5 ?

— give adversary the discrete logarithm of ¢ — it would only help

— nevertheless, the adversary would have to solve the Decisional Diffie-Hellman Problem

16

Noninteractive proof:
a language L (e.g. tautologies), an element z (e.g., a sentence),

a proof for z € L to be verified offline

iz

Interactive Proofs
Actors:
— prover: aims to show that x € L
— verifier: should check the proof for x € L

Protocol: exchange of messages after which the verifier says “valid” (x € L) or “invalid”

Completeness: if v € L= the prover can convince the verifier to answer “valid”
Soundness: if ©ZL = the probability that the verifier answers “valid” is <0.5

if ¢ L then V prover strategy P: Pr ((V, P)[z] =valid) <0.5

18

all NP languages, example: to prove that a graph has a Hamiltonian path:
I. Prover shows a Hamiltonian path P
ii. Verifier checks that P is Hamiltonian

Generally:
I. Prover sends a witness w for x € L

ii. Verifier: test on (w, z)

19

Interactive proofs with many messages exchanged:
Theorem.

[RP=PSPACE

That is:

there is a polynomial interactive proof for L

< there is an algorithm A using polynomial space that A(x)=1iffx € L

20

How to prove without disclosing no information but the fact that x € L?

example: graph isomorphism: prove that graphs G and H are isomorphic without disclosing
the isomorphism ¢

protocol consists of k independent rounds.

A round:

I. Prover generates permutation 7, computes Z =7(G), and sends Z to Verifier
ii. Verifier chooses bit b at random and sends to Prover

iii. Prover returns: mif b=0 (isomorphism G — 7) else o ¢~ (isomorphism H — 7)

iv. Verifier aborts if the function is not an isomorphism

Completeness: obvious

Soundness: if H and G are not isomorphic, then Z can be isomorphic to at most one of them,

proof rejected in at least 50% cases

2L

Interactive proofs are stronger than non-interactive
example: how to show that graphs Gy and (G; are not isomorphic
Round
I. Verifier: choose b at random, permutation 7, calculate C':=n(G,), send C

ii. Prover: finds bit b’ such that G isomorphic to C, returns b’

iii. Verifier: aborts if b’

Prover: unlimited computational power, verifier: randomized polynomial time

Prover: if GG and (G;isomorphic = pbb to guess b is 0.5

no clever strategy of Prover can increase this probability

20

Knowledge gained by Verifier
zero-knowledge = Verifier learns nothing but that x € L

(e.g. x €L iff zis a product of two large primes , then the proof must not reveal the factors

of x)

we are talking about additional knowledge about x:

I. any polynomial time computation of Verifier is not additional knowledge

ii. output of RNG is not additional knowledge
View of of interactive proof for x € L

— all messages exchanged

— all values of internal variables of Verifier

23

Concept of a simulator

an interaction brings no additional knowledge if

the Verifier can create views without the help of Prover so that they are indistinguishable
from real ones:

dsimulator S Vx €L VIEWp y(x) <= S[z]

where:

S

means:
— the same distribution, or
— statistically indistinguishable distributions, or

— computationally indistinguishable

24

Dishonest Verifier
different strategies,
for example instead of choosing r uniformly at random use a different distribution
a smart strategy = information leakage?
Definition

Vverifier W JsimulatorS VrelL VIEWp y(z)=S|z]

for each strategy of the Verifier:

knowledge gained from Prover can be obtained without interaction

25

Black Box Simulator

a simulator that works for any strategy of the verifier — treated as a black box
Definition
dsimulator S Vverifier W VzeL VIEWp y(z)<2Sw|x]

Sw uses W as an oracle

26

Black Box simulator for graph isomorphism

round 7
I. Simulator: selects bit b; and permutation 7;, C: =m;(G),)
ii. Simulator: feeds C; to the black box Verifier

iii. Verifier: returns b}

iv. Simulator: if b; # b; then goto (i), else record C; ;,b; to the transcript of round ¢

this is like “rejection sampling”

27

Protocol Example:
Zero Knowledge with an honest Verifier

not Zero Knowledge with dishonest Verifier

Round
i. Verifier: choose b at random, permutation 7, calculate C':=7(G,), send C
ii. Prover: finds bit b’ such that Gy isomorphic to C, returns b’

iii. Verifier: aborts if b’

Malicious Verifier: aiming to learn whether C' is isomorphic to Gy or (G4

Verifier: send C
Prover: finds bit b’ such that GGy isomorphic to C', returns b’ , or aborts

Verifier: learns that GGy isomorphic to C

this cannot be simulated!

28

ZK protocol for Graph non-isomorphism with black box ZK
I. Verifier: chooses bit b, permutation 7 at random, X :=7(G))
ii. Verifier: for i <2k, choose b; and 7; at random, X;:=m;(G},)
iii. Verifier: present X, X1, ..., Xo, to Verifier
iv. Prover: choose 2k random bits d;, send them to Prover
v. Verifier: if d;=0, then respond with ;
if d;=1, then respond either with L or an isomorphism ¢;: X — X,

vi. Prover: rejects the proof if the number of L is not higher than 2k /3, checks the isomor-
phisms

vii. Prover: sends b’

viii. Verifier: accepts if b=10'

29

Completeness
answer | for the positions where Verifier does not know the isomorphism

Prover: calculations (exponential) but knows that Verifier is not cheating

Soundness
assume that Gy and (G; are isomorphic. Can the prover gain some knowledge about b7
— case d;=0: m; does not help as it is independent of b

— case d;=1: ¢;:X — X, but such isomorphism can be presented if Verifier has chosen
(X =Gy and X;=Gy) or (X =G, and X;=G,), no information on X!

— case d;=1: L only information that (X =G, and X;=G)) or (X =Gy and X;=G)

30

ZK - construction of Black Box Simulator

1. simulator starts a conversation with Black Box Verifier V/,
2. it is run until simulator has to present b (impossible), simulation frozen for a moment

3. rerun with Black Box with the same randomness for Black Box, but different response
of Prover at step (iv)

4. if in a response: one Black Box gave 7; and another gave ¢; then we have an isomorphism
between (G, and X . Then return to the first simulation and resond with b

5. if not the case: cosntant amount of work of exponential algorithm that decides that G
and (G, are not isomorphic and goto (3)

execution time of the simulator: probabilistic polynomial

31

ZK Proof of 3-colorings of a graph
3-coloring is a NP-complete problem:
given a NP problem L instance , there is transformation 7" such that
TR, & T'(z) has 3-coloring

Corollary: a ZK Interactive proof for 3-coloring can be used to get ZKIP for L

(efficiency — not necessarily optimal)

32

ZKIP for 3-coloring

given a graph G, with vertices V' and edges F, Prover knows a 3-coloring C
used: probabilistic encryption Enc, Enc(b,v) means encoding of b using randomness v
round of interaction:
i. Prover: permutes the colors C'— "
Prover: for each v € V, presents Enc(C'(v))
ii. Verifier: chooses an edge (v;,v;) at random
iii. Prover: reveals C’(v;), C"(v;) and randomness used for encrypting them

iv. Verifier: checks: C'(v;)#C"(v;) , recalculates Enc(C’(v;)), Enc(C’(v;)) and compares
with ciphertexts from step (i)

33

Completeness: if Prover knows 3-coloring then succeeds in each round

Soundness: if does not know 3-coloring then in each round at least 1 pair of vertices with
invalid colors

1

— probability to succeed in one round at most 1 — il

: BT,
— inn-|E| rounds: (1_|?1|>n\ e
ZK property
trivial simulator:
i. Sim: encode random coloring with 3 colors
ii. Black Box: returns (v, v;)

iii. Sim: if colors different at v; and v; then record this round, else goto (i)

34

Proofs of knowledge

proving existence <> knowledge of solution are different issues

Example:
Cyclic group, generator ¢, element h:
Proof of existence: Jdxh=g¢* (some mathematical proof)

Proof of knowledge: requires © (DL Problem)

35

Sigma protocols -proof of knowledge of w

I. Prover: commitment for &
ii. Verifier: challenge ¢
iii. Prover: responds with f(e, w, k)

iv. Verifier: checks the answer
Example: Schnorr identification
More general: Arthur-Merlin games: verifier sends only random values

Thm
AM games with polynomial number of rounds exists for L iff L € PSPACE

36

Noninteractive Proofs of knowledge

Fiat-Shamir heuristics:

replace the random choice in Arthur-Merlin Game by hash values

works in ROM

37

SNARKSs -Siccinct Noninteractive Argument of Knowledge

Common reference string (CRS)
— fixed before the proofs are created

— available to Prover and Verifier
Procedures: proof creation, proof verification
Completeness: if Prover knows witness w = verification: accept

Knowledge soundness:

adversary creates a valid proof 1 = Extractor takes internal values of adversary and
yields a witness

Zero-knowledge: distributions of proofs indistinguishable from

distribution of fake proofs created with trapdoor to CRS

38

Target: small size of the proof, low computational complexity of verification

= Succinct NARK (SNARK)

Idea 1: PCP

probabilistically checkable proofs PCP(r(n), q(n)):

— for input of size n verifier reads O(q(n)) bits and takes O(r(n)) bits from RNG
— verifier accepts if proof correct

— verifier accepts with pbb <0.5 if proof incorrect

39

Theorem PCP(log(n),1)=NP

Interctive proof

Vvi.

create a proof 7

. build a Merkle tree with the leaves containing bits of 7

send the root to the verifier

. verifier: choose leaves to be shown and checked

. prover: disclose these leaves and the path to the root

verifier: check consistency with the Merkle tree, check =

40

Circuits

knowledge = knowledge of input x to circuit C' such that C(z)=1

— Boolean circuits (Boolean gates for bits)
— arithmetic circuits (arithmetic gates for elements of field IF)

circuits are equivalent to Turing Machines

steps 1: encode (' to a problem of polynomials

41

Conversion to QAP (Quadratic Arithmetic Program)

output

Polynomials in QAP (V, W, V. t(x))

Roots |
Gates Left inputs Right inputs Outputs
v3(rs) =1 wy(rs) =1 | ys(rs) =1
s vi(rs) = 0, wi(rs) =0, | yi(rs) =0,
=3 1#£4 145
(Al (?"G) = g (?"ﬁ) =1 “H,-’g(?"ﬁ) =], Us (Tﬁ) = I
6 vilrs) =0 wilre) =0, | wlre) =0
i 1,9 b0 i #6

t(,;) = (x —1r5)(x —1r6)

fig: Anca Nitulescu

42

, for each multiplication gate a random r; € IF' was selected

QAP conversion
i. choose random r; for each mnultiplication gate
ii. addition gates treated implicitly

iii. build a polynomial (fig. A.Nitulescu)

Bl = (115(:1:) + Z civ;(r:;)) : (u..fg(;r?) + Z ciu.-'.,-_(;r.')) — (yg(:r:) + Z r:,,;y@(.rr)) ;
i=1 i=1

i=1

LEMMA
for p(ri) =0 if the values ¢ describe correctly the inputs and outputs of the ithe gate

(irrelevant values for this gate are multiplied with 0's of polynomials v_,w.,y..)

Corollary

solution correct iff [[(z — ;) divides polynomial p(x)

43

Linearization for Boolean circuits

output |

Linearization of logic gates

Cq |

OR (Cl WoiE = C(}'} AND (Cg Neq = C?)
C1 C2 Cg C3 Cq C7
000 00 0
01 1 2 00 N 7
1 01 1 0 0
1 = | 1 1 1
| —cy —c2+2¢c6 € {0,1} | c3+cq4 —2¢c7 € {0,1}

Cr,]

XOR gate, input and output bits

XOR (c6 & er = cr) IN ({e:}3 1) OUT (eo)
Ce C7 C8 Ci Co
00 0
011 e {0,1} 1
1 0 1
1 1. 0
ce +cr +cs € {0,2} | 2¢; € {0,2} 3—3cy € {0,2}

44

Trick
image of L€{0,2}iff (L—1)*—1=0

Construction of polynomial

I. express linearization by V', b co that for values ¢ on the wires the values computed are
expressed c-V + b

i. take (¢-V4+b—1)o(ec-V+b—-1)-1
ii. take elements 7; at random

iv. polynomials vy(r;) =b; — 1, vi(r;) =V, ;

d—1 ™ 2
H (z — r;) divides (""»'n (z) + Z (:,,.;1:?(.1:)) — 1.

i=1 i=1

45

Checking divisibility f(x)| p(x)
compute quotent polynomial A
check for random z=2y,25 f(2)-h(z)

number of tests=degree of polynomial p

all computations will be in the exponent!

46

Encoding of information (some briliant tricks envolved)
Enc(a) = ¢*
key property 1: it is homomorphic for addition:
Enc(a) - Enc(b) = Enc(a + b)

key property 2:

given Enc(s), Enc(s?), Enc(s®), ..., Enc(s?) one can compute Enc(p(s)) for any polynomial
of degree <d

Additional assumption: the group used has a bilinear mapping e
key property 3:

easy test one can check if p(s) =0, when only Enc(p(s)) given:
test: e(Enc(g7)), g) =e(g, 9)°?

47

key property 4: given Enc(h(s)), Enc(¢(s)) and Enc(p(s)) one can check whether

h(s)-t(s)=p(s)
Test:

e(Enc(h(s), Enc(t(s)))) = e(g, Enc(p(s))) ?
remark: no need to reveal h(s) for computation Enc(#(s))"*) to get Enc(t(s) - h(s))
key property 5/assumption:
given: Enc(s),Enc(s?), Enc(s%),...,Enc(s?) and Enc(a-s),Enc(a-s?),Enc(a-s?),...,Enc(a-s9)

task: compute Enc(h(s)) and Enc(a-h(s))

assumption: possible iff all coefficients of 4 are known

43

trick 6: Zero-knowledge — randomization of polynomials:

instead of showing that you know h(x) such that p(z)=t(z)- h(z) it suffices to show it
for polynomials p’(x) = p(x) + v - t(x) where v is random

so: pbb distribution of p/(s) is uniform
key property 7:

instead of showing that p(x)=t(x) - h(x) (with revealing the polynomials)

it suffices to show

for unknown random s

(if p(x)#t(x)-h(x) then for only a few elements we have p(s)=t(s) - h(s)

49

remark: there are also solutions in general groups (famous Groth-Sahai approach)

so: universal tools for ZK-SNARKSs, frontline: optimizing compexity

SNARKs from QAP

pict: A.Nitulescu

50

Gen(1%,C)

gk = (p1 I13:\ GT: 'E)
S, lﬂi? JBy p ,{3’!.0 . r'S-y 4—g Zq

Q — ({Ui: Wi, y'i}'ée[m] s ir-)
L= PN o)

Crg o= (Q, gk,
{99 }ico

By Byvi(s
g9 1{9 { }}t’EImid
B .@wwf, 8
g

g =t
3, Byyls

g = {Q y¥i(J}ié[ﬁm])

return crs

Prove(crs, u, w)

u=(e1,...,cN)

w = ({Ca‘}iel'mid)

Umid ‘= Z civi(x)

z-EImid
H o= gh(s}’ ﬁ e goch(s}
Vo= gvmid(h‘): Vo= gﬂ'vmad(ﬁ}

mid
—

I;V' - g.wgfs}! W s gawc(s}

Vs gyc(S)? 7 A ga*yc(:ﬂ

B = gﬁv ve(8)+Bwwe(s)+8yvels)

ri=(H HV. .V

mad * 7 mied *

W, W.,Y,Y,B)

Ver(crs, u,)

Extractability check:
e(H,g") = e(g,9")

a Vi
E(ledvg)ze(gvg m:d)

o

e(W,g") = e(g,9")

e(Y,9%) = e(g.9")
Divisibility check:
e(H,g"") = e(V,W)/e(Y, g)
Linear span check:

e(B,g) = e(V, ¢") - e(W, g**)
-e(Y,g™)

51

