CRYPTOGRAPHY LECTURE, 2023 Master Level, PWr Mirosław Kutyłowski

Zero Knowledge

Challenges for a cryptographic protocol based on a secret key sk:

Problem 1

- each time when a key is used then some information about sk may be leaked
- how to make sure that gradually sk becomes not that "private"?

Problem 2

- a protocol execution may be used for more than intended
- how to prove that no extra protocol is executed so that one participant is not aware of it

Example: Challenge+response authentication \Rightarrow blind signature

Original protocol:

- Alice holds private RSA key d, Bob holds the corresponding e and modulus n
- Alice shows that show holds d:
 - i. Bob chooses r at random
 - ii. Alice computes $c := r^d \mod n$
 - iii. Bob checks that $c^e = r \mod n$

Corrupted execution (Bob is malicious)

- i. Bob chooses a message h = Hash(padding(m)) and random u
- ii. Bob calculates: $r := h \cdot u^e \mod n$ and presents r as the random challenge
- iii. Alice computes $c := r^d \mod n$
- iv. Bob computes $s := c/u \mod n$

note that

$$s = r^d/u = (h \cdot u^e)^d/u = h^d \cdot (u^e)^d/u = h^d \cdot u/u = h^d \mod n$$

voila! Bob has the signature of Alice under m

Consequence: "key usage"- if for "authentication", then never for "signing"

Blind signature – non-malicious application:

the mechanism of **Privacy Pass**

- Issuer signs blinded tokens presented by the client
- the client unblinds the signatures ...
- ... and presents them instead of solving Captchas on third party webpages

token is a proof that it comes from a client privacy protected against the Issuer Example 2: Schnorr authentication converted to proof-of-presence Original protocol:

Alice: secret key SK = x, public key $PK = g^x$

- i. Alice chooses k at random, $r := g^k$
- ii. Alice sends r to Verifier

iii. Verifier chooses c at random and sends to Alice

- iv. Alice calculates $s := k x \cdot c \mod q$ and sends s to Verifier
- v. Verifier checks that $g^s \cdot PK^c = r$

Malicious: $c := \operatorname{Hash}(z)$ where $z := \operatorname{Sign}_{\mathrm{sk(verifier)}}(r)$:

- Alice cannot detect that c has not be chosen at random
- Verifier can show (r, s) and z to prove that he has interacted with Alice

Simultability

Alice holds private key sk and authenticates against Bob Bob cannot create a proof that he has interacted with Alice: no matter how clever are the challenges of Bob, ... Bob can create the responses of Alice by himself

Consequence:

each transcript of interaction can be simulated and therefore useless as a proof of interaction when presented by Bob to a third person

Password authentication example

situation:

- Alice knows a password π
- a smartcard of Alice holds π as well
- smartcard establishes a session with a reader iff the reader proves to know π problems:
- $-\pi$ must not be sent in cleartext
- ... passive (offline) and active attacks should not reveal π
- no proof-of-presence can be created by the reader

Password Authenticated Key Exchange (PAKE) protocol

- session key established iff the same password used on both sides
- password and session key are secure

example: PACE protocol (obligatory on European personal ID documents, on passports)

PACE executed with password π

Phase 0:

i. card and reader: compute symmetric key $K_{\pi} = \text{Hash}(\pi || 0)$

ii. card: choose s at random, send $z = \text{Enc}_{K_{\pi}}(s)$ to the reader iii. reader: $s := \text{Dec}_{K_{\pi}}(z)$

Phase 1: (Diffie-Hellman Key Exchange)

i. reader:	choose x_B at random, $X_B := g^{x_B}$, send X_B to the reader
ii. card:	choose x_A at random, $X_A := g^{x_A}$, send X_A to the reader
iii. reader:	$h := (X_A)^{x_B}, \ \hat{g} := h \cdot g^s$
iv. card:	$h := (X_B)^{x_A}$, $\hat{g} := h \cdot g^s$

Phase 2:	(Diffie-Hellman Key Exchange based on password dependant \hat{g})
i. reader:	choose y_B at random, $Y_B := \hat{g}^{y_B}$, send Y_B to the reade
ii. card:	choose y_A at random, $Y_A\!:=\!\hat{g}^{y_A}$, send Y_A to the reader
iii. reader:	$K := (Y_A)^{y_B}$
iv. card:	$K := (Y_B)^{y_A}$
v. both:	derive $K_{ m MAC}$ and $K_{ m Enc}$ via hashing from K
Phase 3:	(proof of key possesion)
i. reader:	send $T_B := \operatorname{MAC}(K_{\operatorname{MAC}}, Y_A)$ to card
ii. card:	abort if T_B invalid
iii. card:	send $T_A := \operatorname{MAC}(K_{\operatorname{MAC}}, Y_B)$ to reader
iv. reader:	abort if T_A invalid

Start session

all messages encrypted with $K_{\rm Enc}$

Simulation (reader pretending to talk with the card)

Phase 0:

i. reader: $K_{\pi} = \operatorname{Hash}(\pi \| 0)$ ii. "card":send z chosen at randomiii. reader: $s := \operatorname{Dec}_{K_{\pi}}(z)$

Phase 1: (Diffie-Hellman Key Exchange)

i. reader:choose x_B , $X_B := g^{x_B}$, send X_B to the readerii. "card":send X_A chosen at randomiii. reader: $h := (X_A)^{x_B}$, $\hat{g} := h \cdot g^s$ iv. "card":-

Phase 2: (Diffie-Hellman	Key	Exchange	based	on	password	dependant	\hat{q}
		5	0			and the second	and the second	11

i. reader:	choose y_B , $Y_B := \hat{g}^{y_B}$, send Y_B
ii. "card":	send Y_A chosen at random
iii. reader:	$K := (Y_A)^{y_B}$
iv. "card":	
v. reader:	derive $K_{ m MAC}$ and $K_{ m Enc}$
Phase 3:	(proof of key possesion)
i. reader:	send $T_B := MAC(K_{MAC}, Y_A)$
ii. "card":	abort if T_B invalid
iii. "card":	send $T_A := MAC(K_{MAC}, Y_B)$
iv. reader:	abort if T_A invalid

Observation: exactly the same probability distribution as in the case of real interactions

Session confidentiality

how to find out that an observer will not learn anything about the data exchanged after establishing $K_{\rm Enc}$?

maybe some information will be leaked

Proof method??

Abdalla model

two models considered:

- real model: protocol executed as described, session key K established
- artificial model: protocol executed as described, but finally K replaced by a random key **Game**:
 - i. run some number of instances of real model (adversary involved, keys revealed, etc)
 - ii. choose b at random, run
 - \rightarrow real protocol, if b=0
 - \rightarrow artificial protocol, if b=1

iii. again run some instances like in point (i)

iv. challenger reveals the session key K from point (ii)

v. adversary wins if guesses b

Observations

- 1. if the artificial protocol is run, then the adversary cannot learn anything about the workload data from key agreement (obvious - key K is unrelated)
- 2. for the game: one can add the session created with K and run an adversary that wants to break session confidentiality

if adversary succeeds, then we conclude that it is rather a real session

So

it suffices to show that the adversary has a negligible advantage to win the game

How is it for PACE (passive adversary)?

can the adversary detect that master key K has been replaced with a random key? that is:

K is random instead of being the solution for DH tuple \hat{g}, Y_A, Y_B ?

- give adversary the discrete logarithm of \hat{g} it would only help
- nevertheless, the adversary would have to solve the Decisional Diffie-Hellman Problem

Noninteractive proof:

a language L (e.g. tautologies), an element x (e.g., a sentence),

a proof for $x \in L$ to be verified offline

Interactive Proofs

Actors:

- \rightarrow prover: aims to show that $x \in L$
- ightarrow verifier: should check the proof for $x \in L$

Protocol: exchange of messages after which the verifier says "valid" ($x \in L$) or "invalid"

Completeness: if $x \in L \Rightarrow$ the prover can convince the verifier to answer "valid"

Soundness: if $x \notin L \Rightarrow$ the probability that the verifier answers "valid" is ≤ 0.5

if $x \notin L$ then \forall prover strategy P: $\Pr((V, P)[x] = \text{valid}) \leq 0.5$

all NP languages, example: to prove that a graph has a Hamiltonian path:

```
i. Prover shows a Hamiltonian path P
```

ii. Verifier checks that P is Hamiltonian

Generally:

i. Prover sends a witness w for $x \in L$

ii. Verifier: test on (w, x)

Interactive proofs with many messages exchanged:

Theorem.

IP=PSPACE

That is:

there is a polynomial interactive proof for L

 \Leftrightarrow there is an algorithm A using polynomial space that A(x) = 1 iff $x \in L$

How to prove without disclosing no information but the fact that $x \in L$?

example: graph isomorphism: prove that graphs G and H are isomorphic without disclosing the isomorphism ϕ

protocol consists of k independent rounds.

A round:

- i. Prover generates permutation π , computes $Z = \pi(G)$, and sends Z to Verifier
- ii. Verifier chooses bit b at random and sends to Prover
- iii. Prover returns: π if b = 0 (isomorphism $G \to Z$) else $\pi \circ \phi^{-1}$ (isomorphism $H \to Z$)
- iv. Verifier aborts if the function is not an isomorphism

Completeness: obvious

Soundness: if H and G are not isomorphic, then Z can be isomorphic to at most one of them, proof rejected in at least 50% cases

Interactive proofs are stronger than non-interactive

example: how to show that graphs G_0 and G_1 are **not isomorphic**

Round

- i. Verifier: choose b at random, permutation π , calculate $C := \pi(G_b)$, send C
- ii. Prover: finds bit b' such that $G_{b'}$ isomorphic to C, returns b'
- iii. Verifier: aborts if $b' \neq b$

Prover: unlimited computational power, verifier: randomized polynomial time

Prover: if G_0 and G_1 isomorphic \Rightarrow pbb to guess b is 0.5

no clever strategy of Prover can increase this probability

Knowledge gained by Verifier

zero-knowledge \equiv Verifier learns nothing but that $x \in L$

(e.g. $x \in L$ iff x is a product of two large primes, then the proof must not reveal the factors of x)

we are talking about additional knowledge about x:

i. any polynomial time computation of Verifier is not additional knowledge

ii. output of RNG is not additional knowledge

View of of interactive proof for $x \in L$

- all messages exchanged
- all values of internal variables of Verifier

Concept of a simulator

an interaction brings no additional knowledge if

the Verifier can create views without the help of Prover so that they are indistinguishable from real ones:

 $\exists \operatorname{simulator} S \quad \forall x \in L \quad \operatorname{VIEW}_{P,V}(x) \simeq S[x]$

where:

∽ means:

- the same distribution, or
- statistically indistinguishable distributions, or
- computationally indistinguishable

Dishonest Verifier

different strategies,

for example instead of choosing r uniformly at random use a different distribution

```
a smart strategy \Rightarrow information leakage?
```

Definition

 \forall verifier $W \exists$ simulator $S \forall x \in L \quad \text{VIEW}_{P,W}(x) \simeq S[x]$

for each strategy of the Verifier:

knowledge gained from Prover can be obtained without interaction

Black Box Simulator

a simulator that works for any strategy of the verifier – treated as a black box

Definition

 $\exists \text{ simulator } S \quad \forall \text{ verifier } W \quad \forall x \in L \quad \text{VIEW}_{P,W}(x) \simeq S_W[x]$

 S_W uses W as an oracle

Black Box simulator for graph isomorphism

round i

i. Simulator: selects bit b_i and permutation π_i , $C := \pi_i(G_{b_i})$

ii. Simulator: feeds C_i to the black box Verifier

iii. Verifier: returns b'_i

iv. Simulator: if $b_i \neq b'_i$ then goto (i), else record C_{i,π_i,b_i} to the transcript of round *i*

this is like "rejection sampling"

Protocol Example:

Zero Knowledge with an honest Verifier not Zero Knowledge with dishonest Verifier

Round

- i. Verifier: choose b at random, permutation π , calculate $C := \pi(G_b)$, send C
- ii. Prover: finds bit b' such that $G_{b'}$ isomorphic to C, returns b'
- iii. Verifier: aborts if $b' \neq b$

Malicious Verifier: aiming to learn whether C is isomorphic to G_0 or G_1

- * Verifier: send C
- * Prover: finds bit b' such that $G_{b'}$ isomorphic to C, returns b', or aborts
- * Verifier: learns that $G_{b'}$ isomorphic to C

this cannot be simulated!

ZK protocol for Graph non-isomorphism with black box ZK

i. Verifier: chooses bit b, permutation π at random, $X := \pi(G_b)$

ii. Verifier: for $i \leq 2k$, choose b_i and π_i at random, $X_i := \pi_i(G_{b_i})$

iii. Verifier: present $X, X_1, ..., X_{2k}$ to Verifier

iv. Prover: choose 2k random bits d_i , send them to Prover

v. Verifier: if $d_i = 0$, then respond with π_i

if $d_i = 1$, then respond either with \perp or an isomorphism $\phi_i: X \to X_i$

vi. Prover: rejects the proof if the number of \perp is not higher than 2k/3, checks the isomorphisms

vii. Prover: sends b'

viii. Verifier: accepts if b = b'

Completeness

answer \perp for the positions where Verifier does not know the isomorphism Prover: calculations (exponential) but knows that Verifier is not cheating

Soundness

assume that G_0 and G_1 are isomorphic. Can the prover gain some knowledge about b?

- case $d_i = 0$: π_i does not help as it is independent of b
- case $d_i = 1$: $\phi_i: X \to X_i$ but such isomorphism can be presented if Verifier has chosen $(X = G_0 \text{ and } X_i = G_0)$ or $(X = G_1 \text{ and } X_i = G_1)$, no information on X!
- case $d_i = 1$: \perp only information that $(X = G_1 \text{ and } X_i = G_0)$ or $(X = G_0 \text{ and } X_i = G_1)$

ZK - construction of Black Box Simulator

1. simulator starts a conversation with Black Box Verifier V,

- 2. it is run until simulator has to present b (impossible), simulation frozen for a moment
- 3. rerun with Black Box with the same randomness for Black Box, but different response of Prover at step (iv)
- 4. if in a response: one Black Box gave π_i and another gave ϕ_i then we have an isomorphism between G_b and X. Then return to the first simulation and resond with b
- 5. if not the case: cosntant amount of work of exponential algorithm that decides that G_0 and G_1 are not isomorphic and goto (3)

execution time of the simulator: probabilistic polynomial

ZK Proof of 3-colorings of a graph

3-coloring is a NP-complete problem:

given a NP problem L instance, there is transformation T such that

 $x \in L \quad \Leftrightarrow \quad T(x) \text{ has 3-coloring}$

Corollary: a ZK Interactive proof for 3-coloring can be used to get ZKIP for L

(efficiency – not necessarily optimal)

ZKIP for 3-coloring

given a graph G, with vertices V and edges E, Prover knows a 3-coloring Cused: probabilistic encryption Enc, Enc(b, v) means encoding of b using randomness vround of interaction:

i. Prover: permutes the colors $C \rightarrow C'$

Prover: for each $v \in V$, presents Enc(C'(v))

- ii. Verifier: chooses an edge (v_i, v_j) at random
- iii. Prover: reveals $C'(v_i), C'(v_j)$ and randomness used for encrypting them
- iv. Verifier: checks: $C'(v_i) \neq C'(v_j)$, recalculates $\text{Enc}(C'(v_i))$, $\text{Enc}(C'(v_j))$ and compares with ciphertexts from step (i)

Completeness: if Prover knows 3-coloring then succeeds in each round

Soundness: if does not know 3-coloring then in each round at least 1 pair of vertices with invalid colors

- \rightarrow probability to succeed in one round at most $1 \frac{1}{|E|}$
- \rightarrow in $n \cdot |E|$ rounds: $\left(1 \frac{1}{|E|}\right)^{n \cdot |E|} \approx e^{-n}$

ZK property

trivial simulator:

- i. Sim: encode random coloring with 3 colors
- ii. Black Box: returns (v_i, v_j)
- iii. Sim: if colors different at v_i and v_j then record this round, else goto (i)

Proofs of knowledge

proving existence \leftrightarrow knowledge of solution are different issues

Example:

```
Cyclic group, generator g, element h:
```

Proof of existence: $\exists x h = g^x$ (some mathematical proof)

Proof of knowledge: requires x (DL Problem)

Sigma protocols -proof of knowledge of w

i. Prover: commitment for k

ii. Verifier: challenge *e*

iii. Prover: responds with f(e, w, k)

iv. Verifier: checks the answer

Example: Schnorr identification

More general: Arthur-Merlin games: verifier sends only random values **Thm**

AM games with polynomial number of rounds exists for L iff $L \in PSPACE$

Noninteractive Proofs of knowledge

Fiat-Shamir heuristics:

replace the random choice in Arthur-Merlin Game by hash values

works in ROM

SNARKs -Siccinct Noninteractive Argument of Knowledge

Common reference string (CRS)

- \rightarrow fixed before the proofs are created
- \rightarrow available to Prover and Verifier

Procedures: proof creation, proof verification

Completeness: if Prover knows witness $w \Rightarrow$ verification: accept

Knowledge soundness:

adversary creates a valid proof $\pi \implies$ Extractor takes internal values of adversary and yields a witness

Zero-knowledge: distributions of proofs indistinguishable from distribution of fake proofs created with trapdoor to CRS

Target: small size of the proof, low computational complexity of verification

⇒ Succinct NARK (SNARK)

Idea 1: PCP

probabilistically checkable proofs PCP(r(n), q(n)):

- for input of size n verifier reads O(q(n)) bits and takes O(r(n)) bits from RNG
- verifier accepts if proof correct
- verifier accepts with pbb ≤ 0.5 if proof incorrect

Theorem

PCP(log(n),1)=NP

Interctive proof

- i. create a proof π
- ii. build a Merkle tree with the leaves containing bits of π
- iii. send the root to the verifier
- iv. verifier: choose leaves to be shown and checked
- v. prover: disclose these leaves and the path to the root
- vi. verifier: check consistency with the Merkle tree, check π

Circuits

knowledge = knowledge of input x to circuit C such that C(x) = 1

- Boolean circuits (Boolean gates for bits)
- arithmetic circuits (arithmetic gates for elements of field \mathbb{F})

circuits are equivalent to Turing Machines

steps 1: encode C to a problem of polynomials

Conversion to QAP (Quadratic Arithmetic Program)

fig: Anca Nitulescu , for each multiplication gate a random $r_i \in \mathbb{F}$ was selected

QAP conversion

i. choose random r_i for each mnultiplication gate

- ii. addition gates treated implicitly
- iii. build a polynomial (fig. A.Nitulescu)

$$p(x) \coloneqq \left(v_0(x) + \sum_{i=1}^m c_i v_i(x)\right) \cdot \left(w_0(x) + \sum_{i=1}^m c_i w_i(x)\right) - \left(y_0(x) + \sum_{i=1}^m c_i y_i(x)\right)$$

LEMMA

for $p(r_i) = 0$ if the values $c_{...}$ describe correctly the inputs and outputs of the *i*the gate (irrelevant values for this gate are multiplied with 0's of polynomials $v_{...}, w_{...}, y_{...}$)

Corollary

solution correct iff $\prod (x - r_i)$ divides polynomial p(x)

Linearization for Boolean circuits

Trick

image of $L \in \{0, 2\}$ iff $(L-1)^2 - 1 = 0$

Construction of polynomial

- i. express linearization by V, b co that for values c on the wires the values computed are expressed $c \cdot V + b$
- ii. take $(\boldsymbol{c}\cdot\boldsymbol{V}+\boldsymbol{b}-\boldsymbol{1})\circ(\boldsymbol{c}\cdot\boldsymbol{V}+\boldsymbol{b}-\boldsymbol{1})-\boldsymbol{1}$
- iii. take elements r_i at random
- iv. polynomials $v_0(r_j) = b_j 1$, $v_i(r_j) = V_{i,j}$

$$\prod_{i=1}^{d-1} (x - r_i) \text{ divides } \left(v_0(x) + \sum_{i=1}^m c_i v_i(x) \right)^2 - 1.$$

Checking divisibility f(x)|p(x)

compute quotent polynomial h

check for random $z = z_1, z_2, \ldots$: $f(z) \cdot h(z) = p(z)$

number of tests=degree of polynomial p

all computations will be in the exponent!

Encoding of information (some briliant tricks envolved)

 $\operatorname{Enc}(a) = g^a$

key property 1: it is homomorphic for addition:

 $\operatorname{Enc}(a) \cdot \operatorname{Enc}(b) = \operatorname{Enc}(a+b)$

key property 2:

given $Enc(s), Enc(s^2), Enc(s^3), ..., Enc(s^d)$ one can compute Enc(p(s)) for any polynomial of degree $\leq d$

Additional assumption: the group used has a bilinear mapping e

key property 3:

easy test one can check if p(s) = 0, when only Enc(p(s)) given: test: $e(\text{Enc}(g^{p(s)}), g) = e(g, g)^0$? key property 4: given Enc(h(s)), Enc(t(s)) and Enc(p(s)) one can check whether $h(s) \cdot t(s) = p(s)$

Test:

$$e(\operatorname{Enc}(h(s),\operatorname{Enc}(t(s)))) = e(g,\operatorname{Enc}(p(s)))?$$

remark: no need to reveal h(s) for computation $\operatorname{Enc}(t(s))^{h(s)}$ to get $\operatorname{Enc}(t(s) \cdot h(s))$

key property 5/assumption:

given: $\operatorname{Enc}(s)$, $\operatorname{Enc}(s^2)$, $\operatorname{Enc}(s^3)$,..., $\operatorname{Enc}(s^d)$ and $\operatorname{Enc}(\alpha \cdot s)$, $\operatorname{Enc}(\alpha \cdot s^2)$, $\operatorname{Enc}(\alpha \cdot s^3)$,..., $\operatorname{Enc}(\alpha \cdot s^d)$ task: compute $\operatorname{Enc}(h(s))$ and $\operatorname{Enc}(\alpha \cdot h(s))$ assumption: possible iff all coefficients of h are known trick 6: Zero-knowledge — randomization of polynomials:

instead of showing that you know h(x) such that $p(x) = t(x) \cdot h(x)$ it suffices to show it for polynomials $p'(x) = p(x) + \gamma \cdot t(x)$ where γ is random

so: pbb distribution of p'(s) is uniform

key property 7:

instead of showing that $p(x) = t(x) \cdot h(x)$ (with revealing the polynomials) it suffices to show

 $p(s) = t(s) \cdot h(s)$

for unknown random s

(if $p(x) \neq t(x) \cdot h(x)$ then for only a few elements we have $p(s) = t(s) \cdot h(s)$

remark: there are also solutions in general groups (famous Groth-Sahai approach) so: universal tools for ZK-SNARKs, frontline: **optimizing compexity**

SNARKs from QAP

pict: A.Nitulescu

$$\frac{\operatorname{Gen}(1^{\wedge}, \mathbb{C})}{\operatorname{gk} := (p, \mathbb{G}, \mathbb{G}_{T}, \mathbb{e})} \\
s, \alpha, \beta_{v}, \beta_{w}, \beta_{y} \leftarrow \mathbb{Z}_{q} \\
Q := (\{v_{i}, w_{i}, y_{i}\}_{i \in [m]}, t) \\
\mathcal{I}_{\mathsf{mid}} = \{N + 1, \dots m\} \\
\operatorname{crs} := (Q, \operatorname{gk}, \\
\{g^{s^{i}}, g^{\alpha s^{i}}\}_{i=0}^{d} \\
g^{\beta_{v}}, \{g^{\beta_{v}v_{i}(s)}\}_{i \in \mathcal{I}_{\mathsf{mid}}} \\
g^{\beta_{w}}, \{g^{\beta_{w}w_{i}(s)}\}_{i \in [m]} \\
g^{\beta_{y}}, \{g^{\beta_{y}y_{i}(s)}\}_{i \in [m]}) \\
\operatorname{return crs}$$

$$\begin{aligned} & \frac{\mathsf{Prove}(\mathsf{crs}, u, w)}{u \coloneqq (c_1, \dots, c_N)} \\ & u \coloneqq (c_1, \dots, c_N) \\ & w \coloneqq (\{c_i\}_{i \in \mathcal{I}_{\mathsf{mid}}}) \\ & v_{\mathsf{mid}} \coloneqq \sum_{i \in \mathcal{I}_{\mathsf{mid}}} c_i v_i(x) \\ & H \coloneqq g^{h(s)}, \quad \widehat{H} \coloneqq g^{\alpha h(s)} \\ & V_{\mathsf{mid}} \coloneqq g^{v_{\mathsf{mid}}(s)}, \quad \widehat{V}_{\mathsf{mid}} \coloneqq g^{\alpha v_{\mathsf{mid}}(s)} \\ & W \coloneqq g^{w_{\mathsf{c}}(s)}, \quad \widehat{W} \coloneqq g^{\alpha w_{\mathsf{c}}(s)} \\ & W \coloneqq g^{y_{\mathsf{c}}(s)}, \quad \widehat{Y} \coloneqq g^{\alpha w_{\mathsf{c}}(s)} \\ & F \coloneqq g^{\beta_v v_{\mathsf{c}}(s) + \beta_w w_{\mathsf{c}}(s) + \beta_y y_{\mathsf{c}}(s)} \\ & \pi \coloneqq (H, \widehat{H}, V_{\mathsf{mid}}, \widehat{V}_{\mathsf{mid}}, \\ & W, \widehat{W}, Y, \widehat{Y}, B) \end{aligned}$$