
CRYPTOGRAPHY LECTURE, 2023

Master Level, PWr

Mirosław Kutyłowski

Zero Knowledge

Challenges for a cryptographic protocol based on a secret key sk:

Problem 1

• each time when a key is used then some information about sk may be leaked

• how to make sure that gradually sk becomes not that “private”?

Problem 2

• a protocol execution may be used for more than intended

• how to prove that no extra protocol is executed so that one participant is not aware of it

1

Example: Challenge+response authentication ⇒ blind signature

Original protocol:

− Alice holds private RSA key d , Bob holds the corresponding e and modulus n

− Alice shows that show holds d:

i. Bob chooses r at random

ii. Alice computes c8 rd modn

iii. Bob checks that ce= r modn

2

Corrupted execution (Bob is malicious)

i. Bob chooses a message h=Hash(padding(m)) and random u

ii. Bob calculates: r8 h ·ue modn and presents r as the random challenge

iii. Alice computes c8 rd modn

iv. Bob computes s8 c/umodn

note that

s= rd/u=(h ·ue)d/u= hd · (ue)d/u= hd ·u/u=hd modn

voila! Bob has the signature of Alice under m

Consequence: “key usage”– if for “authentication”, then never for “signing”

3

Blind signature – non-malicious application:

the mechanism of Privacy Pass

− Issuer signs blinded tokens presented by the client

− the client unblinds the signatures ...

− ... and presents them instead of solving Captchas on third party webpages

token is a proof that it comes from a client

privacy protected against the Issuer

4

Example 2: Schnorr authentication converted to proof-of-presence

Original protocol:

Alice: secret key SK= x, public key PK= gx

i. Alice chooses k at random, r8 gk

ii. Alice sends r to Verifier

iii. Verifier chooses c at random and sends to Alice

iv. Alice calculates s8 k−x · cmod q and sends s to Verifier

v. Verifier checks that gs ·PKc= r

Malicious: c8 Hash(z) where z8 Signsk(verifier)(r) :

− Alice cannot detect that c has not be chosen at random

− Verifier can show (r, s) and z to prove that he has interacted with Alice

5

Simultability

Alice holds private key sk and authenticates against Bob

Bob cannot create a proof that he has interacted with Alice:

no matter how clever are the challenges of Bob,

... Bob can create the responses of Alice by himself

Consequence:

each transcript of interaction can be simulated and therefore

useless as a proof of interaction when presented by Bob to a third person

6

Password authentication example

situation:

− Alice knows a password π

− a smartcard of Alice holds π as well

− smartcard establishes a session with a reader iff the reader proves to know π

problems:

− π must not be sent in cleartext

− ... passive (offline) and active attacks should not reveal π

− no proof-of-presence can be created by the reader

7

Password Authenticated Key Exchange (PAKE) protocol

• session key established iff the same password used on both sides

• password and session key are secure

example: PACE protocol (obligatory on European personal ID documents, on passports)

8

PACE executed with password π

Phase 0:

i. card and reader: compute symmetric key Kπ=Hash(π‖0)

ii. card: choose s at random, send z=EncKπ
(s) to the reader

iii. reader: s8 DecKπ
(z)

Phase 1: (Diffie-Hellman Key Exchange)

i. reader: choose xB at random, XB8 gxB , send XB to the reader

ii. card: choose xA at random, XA8 gxA , send XA to the reader

iii. reader: h8 (XA)
xB, ĝ 8 h · gs

iv. card: h8 (XB)
xA, ĝ8 h · gs

9

Phase 2: (Diffie-Hellman Key Exchange based on password dependant ĝ)

i. reader: choose yB at random, YB8 ĝ yB , send YB to the reade

ii. card: choose yA at random, YA8 ĝ yA , send YA to the reader

iii. reader: K8 (YA)
yB

iv. card: K8 (YB)
yA

v. both: derive KMAC and KEnc via hashing from K

Phase 3: (proof of key possesion)

i. reader: send TB8 MAC(KMAC, YA) to card

ii. card: abort if TB invalid

iii. card: send TA8 MAC(KMAC, YB) to reader

iv. reader: abort if TA invalid

Start session

all messages encrypted with KEnc

10

Simulation (reader pretending to talk with the card)

Phase 0:

i. reader: Kπ=Hash(π‖0)

ii. ”card”: send z chosen at random

iii. reader: s8 DecKπ
(z)

Phase 1: (Diffie-Hellman Key Exchange)

i. reader: choose xB, XB8 gxB , send XB to the reader

ii. ”card”: send XA chosen at random

iii. reader: h8 (XA)
xB, ĝ 8 h · gs

iv. ”card”: —

11

Phase 2: (Diffie-Hellman Key Exchange based on password dependant ĝ)

i. reader: choose yB, YB8 ĝ yB , send YB

ii. ”card”: send YA chosen at random

iii. reader: K8 (YA)
yB

iv. ”card”: —

v. reader: derive KMAC and KEnc

Phase 3: (proof of key possesion)

i. reader: send TB8 MAC(KMAC, YA)

ii. ”card”: abort if TB invalid

iii. ”card”: send TA8 MAC(KMAC, YB)

iv. reader: abort if TA invalid

Observation: exactly the same probability distribution as in the case of real inter-
actions

12

Session confidentiality

how to find out that an observer will not learn anything about the data exchanged after
establishing KEnc ?

maybe some information will be leaked

Proof method??

13

Abdalla model

two models considered:

• real model: protocol executed as described, session key K established

• artificial model: protocol executed as described, but finally K replaced by a random key

Game:

i. run some number of instances of real model (adversary involved, keys revealed, etc)

ii. choose b at random, run

→ real protocol, if b=0

→ artificial protocol, if b=1

iii. again run some instances like in point (i)

iv. challenger reveals the session key K from point (ii)

v. adversary wins if guesses b

14

Observations

1. if the artificial protocol is run, then the adversary cannot learn anything about the work-
load data from key agreement (obvious - key K is unrelated)

2. for the game: one can add the session created with K and run an adversary that wants
to break session confidentiality

if adversary succeeds, then we conclude that it is rather a real session

So

it suffices to show that the adversary has a negligible advantage to win the game

15

How is it for PACE (passive adversary)?

can the adversary detect that master key K has been replaced with a random key?

that is:

K is random instead of being the solution for DH tuple ĝ , YA, YB ?

– give adversary the discrete logarithm of ĝ – it would only help

– nevertheless, the adversary would have to solve the Decisional Diffie-Hellman Problem

16

Noninteractive proof:

a language L (e.g. tautologies), an element x (e.g., a sentence),

a proof for x∈L to be verified offline

17

Interactive Proofs

Actors:

→ prover: aims to show that x∈L

→ verifier: should check the proof for x∈L

Protocol: exchange of messages after which the verifier says “valid” (x∈L) or “invalid”

Completeness: if x∈L⇒ the prover can convince the verifier to answer “valid”

Soundness: if x∈L⇒ the probability that the verifier answers “valid” is ≤0.5

if x∈L then ∀ prover strategy P : Pr ((V , P)[x] = valid)≤0.5

18

all NP languages, example: to prove that a graph has a Hamiltonian path:

i. Prover shows a Hamiltonian path P

ii. Verifier checks that P is Hamiltonian

Generally:

i. Prover sends a witness w for x∈L

ii. Verifier: test on (w, x)

19

Interactive proofs with many messages exchanged:

Theorem.

IP=PSPACE

That is:

there is a polynomial interactive proof for L

⇔ there is an algorithm A using polynomial space that A(x)= 1 iff x∈L

20

How to prove without disclosing no information but the fact that x∈L?

example: graph isomorphism: prove that graphs G and H are isomorphic without disclosing
the isomorphism φ

protocol consists of k independent rounds.

A round:

i. Prover generates permutation π, computes Z = π(G), and sends Z to Verifier

ii. Verifier chooses bit b at random and sends to Prover

iii. Prover returns: π if b=0 (isomorphism G→Z) else π ◦ φ−1 (isomorphism H→Z)

iv. Verifier aborts if the function is not an isomorphism

Completeness: obvious

Soundness: if H and G are not isomorphic, then Z can be isomorphic to at most one of them,

proof rejected in at least 50% cases

21

Interactive proofs are stronger than non-interactive

example: how to show that graphs G0 and G1 are not isomorphic

Round

i. Verifier: choose b at random, permutation π, calculate C8 π(Gb), send C

ii. Prover: finds bit b′ such that Gb′ isomorphic to C, returns b′

iii. Verifier: aborts if b′� b

Prover: unlimited computational power, verifier: randomized polynomial time

Prover: if G0 and G1 isomorphic ⇒ pbb to guess b is 0.5

no clever strategy of Prover can increase this probability

22

Knowledge gained by Verifier

zero-knowledge ≡ Verifier learns nothing but that x∈L

(e.g. x∈L iff x is a product of two large primes , then the proof must not reveal the factors
of x)

we are talking about additional knowledge about x:

i. any polynomial time computation of Verifier is not additional knowledge

ii. output of RNG is not additional knowledge

View of of interactive proof for x∈L

− all messages exchanged

− all values of internal variables of Verifier

23

Concept of a simulator

an interaction brings no additional knowledge if

the Verifier can create views without the help of Prover so that they are indistinguishable
from real ones:

∃ simulatorS ∀x∈L VIEWP ,V (x)⋍S[x]

where:

⋍ means:

− the same distribution, or

− statistically indistinguishable distributions, or

− computationally indistinguishable

24

Dishonest Verifier

different strategies,

for example instead of choosing r uniformly at random use a different distribution

a smart strategy ⇒ information leakage?

Definition

∀ verifierW ∃ simulatorS ∀x∈L VIEWP ,W(x)⋍S[x]

for each strategy of the Verifier:

knowledge gained from Prover can be obtained without interaction

25

Black Box Simulator

a simulator that works for any strategy of the verifier – treated as a black box

Definition

∃ simulatorS ∀ verifierW ∀x∈L VIEWP ,W(x)⋍SW [x]

SW uses W as an oracle

26

Black Box simulator for graph isomorphism

round i

i. Simulator: selects bit bi and permutation πi, C: =πi(Gbi)

ii. Simulator: feeds Ci to the black box Verifier

iii. Verifier: returns bi
′

iv. Simulator: if bi� bi
′ then goto (i), else record Ci,πi, bi to the transcript of round i

this is like “rejection sampling”

27

Protocol Example:

Zero Knowledge with an honest Verifier

not Zero Knowledge with dishonest Verifier

Round

i. Verifier: choose b at random, permutation π, calculate C8 π(Gb), send C

ii. Prover: finds bit b′ such that Gb′ isomorphic to C, returns b′

iii. Verifier: aborts if b′� b

Malicious Verifier: aiming to learn whether C is isomorphic to G0 or G1

∗ Verifier: send C

∗ Prover: finds bit b′ such that Gb′ isomorphic to C, returns b′ , or aborts

∗ Verifier: learns that Gb′ isomorphic to C

this cannot be simulated!

28

ZK protocol for Graph non-isomorphism with black box ZK

i. Verifier: chooses bit b, permutation π at random, X8 π(Gb)

ii. Verifier: for i≤ 2k, choose bi and πi at random, Xi8 πi(Gbi)

iii. Verifier: present X,X1,
 , X2k to Verifier

iv. Prover: choose 2k random bits di, send them to Prover

v. Verifier: if di=0, then respond with πi

if di=1, then respond either with ⊥ or an isomorphism φi :X→Xi

vi. Prover: rejects the proof if the number of ⊥ is not higher than 2k/3, checks the isomor-
phisms

vii. Prover: sends b’

viii. Verifier: accepts if b= b′

29

Completeness

answer ⊥ for the positions where Verifier does not know the isomorphism

Prover: calculations (exponential) but knows that Verifier is not cheating

Soundness

assume that G0 and G1 are isomorphic. Can the prover gain some knowledge about b?

− case di=0: πi does not help as it is independent of b

− case di = 1: φi:X →Xi but such isomorphism can be presented if Verifier has chosen

(X =G0 and Xi=G0) or (X =G1 and Xi=G1), no information on X!

− case di=1: ⊥ only information that (X =G1 and Xi=G0) or (X =G0 and Xi=G1)

30

ZK - construction of Black Box Simulator

1. simulator starts a conversation with Black Box Verifier V ,

2. it is run until simulator has to present b (impossible), simulation frozen for a moment

3. rerun with Black Box with the same randomness for Black Box, but different response
of Prover at step (iv)

4. if in a response: one Black Box gave πi and another gave φi then we have an isomorphism
between Gb and X . Then return to the first simulation and resond with b

5. if not the case: cosntant amount of work of exponential algorithm that decides that G0

and G1 are not isomorphic and goto (3)

execution time of the simulator: probabilistic polynomial

31

ZK Proof of 3-colorings of a graph

3-coloring is a NP-complete problem:

given a NP problem L instance , there is transformation T such that

x∈L ⇔ T (x) has 3-coloring

Corollary: a ZK Interactive proof for 3-coloring can be used to get ZKIP for L

(efficiency – not necessarily optimal)

32

ZKIP for 3-coloring

given a graph G, with vertices V and edges E, Prover knows a 3-coloring C

used: probabilistic encryption Enc, Enc(b, v) means encoding of b using randomness v

round of interaction:

i. Prover: permutes the colors C→C ′

Prover: for each v ∈V , presents Enc(C ′(v))

ii. Verifier: chooses an edge (vi, vj) at random

iii. Prover: reveals C ′(vi), C
′(vj) and randomness used for encrypting them

iv. Verifier: checks: C ′(vi)�C
′(vj) , recalculates Enc(C ′(vi)), Enc(C

′(vj)) and compares
with ciphertexts from step (i)

33

Completeness: if Prover knows 3-coloring then succeeds in each round

Soundness: if does not know 3-coloring then in each round at least 1 pair of vertices with
invalid colors

→ probability to succeed in one round at most 1−
1

|E |

→ in n · |E | rounds:
(

1−
1

|E |

)

n·|E |
≈ e−n

ZK property

trivial simulator:

i. Sim: encode random coloring with 3 colors

ii. Black Box: returns (v
i
, vj)

iii. Sim: if colors different at vi and vj then record this round, else goto (i)

34

Proofs of knowledge

proving existence ↔ knowledge of solution are different issues

Example:

Cyclic group, generator g, element h:

Proof of existence: ∃xh= gx (some mathematical proof)

Proof of knowledge: requires x (DL Problem)

35

Sigma protocols -proof of knowledge of w

i. Prover: commitment for k

ii. Verifier: challenge e

iii. Prover: responds with f(e, w, k)

iv. Verifier: checks the answer

Example: Schnorr identification

More general: Arthur-Merlin games: verifier sends only random values

Thm

AM games with polynomial number of rounds exists for L iff L∈PSPACE

36

Noninteractive Proofs of knowledge

Fiat-Shamir heuristics:

replace the random choice in Arthur-Merlin Game by hash values

works in ROM

37

SNARKs -Siccinct Noninteractive Argument of Knowledge

Common reference string (CRS)

→ fixed before the proofs are created

→ available to Prover and Verifier

Procedures: proof creation, proof verification

Completeness: if Prover knows witness w ⇒ verification: accept

Knowledge soundness:

adversary creates a valid proof π ⇒ Extractor takes internal values of adversary and
yields a witness

Zero-knowledge: distributions of proofs indistinguishable from

distribution of fake proofs created with trapdoor to CRS

38

Target: small size of the proof, low computational complexity of verification

⇒ Succinct NARK (SNARK)

Idea 1: PCP

probabilistically checkable proofs PCP(r(n), q(n)):

− for input of size n verifier reads O(q(n)) bits and takes O(r(n)) bits from RNG

− verifier accepts if proof correct

− verifier accepts with pbb ≤0.5 if proof incorrect

39

Theorem PCP(log(n),1)=NP

Interctive proof

i. create a proof π

ii. build a Merkle tree with the leaves containing bits of π

iii. send the root to the verifier

iv. verifier: choose leaves to be shown and checked

v. prover: disclose these leaves and the path to the root

vi. verifier: check consistency with the Merkle tree, check π

40

Circuits

knowledge = knowledge of input x to circuit C such that C(x)= 1

− Boolean circuits (Boolean gates for bits)

− arithmetic circuits (arithmetic gates for elements of field F)

circuits are equivalent to Turing Machines

steps 1: encode C to a problem of polynomials

41

Conversion to QAP (Quadratic Arithmetic Program)

fig: Anca Nitulescu , for each multiplication gate a random ri∈F was selected

42

QAP conversion

i. choose random ri for each mnultiplication gate

ii. addition gates treated implicitly

iii. build a polynomial (fig. A.Nitulescu)

LEMMA

for p
(

ri
)

=0 if the values c

describe correctly the inputs and outputs of the ithe gate

(irrelevant values for this gate are multiplied with 0’s of polynomials v

, w

, y

)

Corollary

solution correct iff
∏

(x− ri) divides polynomial p(x)

43

Linearization for Boolean circuits

44

Trick

image of L∈{0, 2} iff (L− 1)2− 1=0

Construction of polynomial

i. express linearization by V , b co that for values c on the wires the values computed are
expressed c ·V + b

ii. take (c ·V + b−1) ◦ (c ·V + b−1)−1

iii. take elements ri at random

iv. polynomials v0(rj)= bj − 1, vi(rj)=Vi,j

45

Checking divisibility f(x)| p(x)

compute quotent polynomial h

check for random z= z1, z2,
 .: f(z) · h(z)= p(z)

number of tests=degree of polynomial p

all computations will be in the exponent!

46

Encoding of information (some briliant tricks envolved)

Enc(a)= ga

key property 1: it is homomorphic for addition:

Enc(a) ·Enc(b)=Enc(a+ b)

key property 2:

given Enc(s),Enc(s2),Enc(s3),
 ,Enc(sd) one can compute Enc(p(s)) for any polynomial
of degree ≤d

Additional assumption: the group used has a bilinear mapping e

key property 3:

easy test one can check if p(s)= 0, when only Enc(p(s)) given:

test: e(Enc(gp(s)), g)=e(g, g)0?

47

key property 4: given Enc(h(s)), Enc(t(s)) and Enc(p(s)) one can check whether

h(s) · t(s)= p(s)

Test:

e(Enc(h(s),Enc(t(s))))= e(g,Enc(p(s))) ?

remark: no need to reveal h(s) for computation Enc(t(s))h(s) to get Enc(t(s) ·h(s))

key property 5/assumption:

given: Enc(s),Enc(s2),Enc(s3),
 ,Enc(sd) and Enc(α ·s),Enc(α ·s2),Enc(α ·s3),
 ,Enc(α ·sd)

task: compute Enc(h(s)) and Enc(α ·h(s))

assumption: possible iff all coefficients of h are known

48

trick 6: Zero-knowledge — randomization of polynomials:

instead of showing that you know h(x) such that p(x) = t(x) · h(x) it suffices to show it
for polynomials p ′(x)= p(x)+ γ · t(x) where γ is random

so: pbb distribution of p′(s) is uniform

key property 7:

instead of showing that p(x)= t(x) ·h(x) (with revealing the polynomials)

it suffices to show

p(s)= t(s) ·h(s)

for unknown random s

(if p(x)� t(x) ·h(x) then for only a few elements we have p(s)= t(s) ·h(s)

49

remark: there are also solutions in general groups (famous Groth-Sahai approach)

so: universal tools for ZK-SNARKs, frontline: optimizing compexity

SNARKs from QAP

pict: A.Nitulescu

50

51

