CRYPTOGRAPHY LECTURE, 2023,

Master level

Mirosław Kutyłowski

Asymmetric Encryption

Fundamental difference

- −decryption and encryption key different
- − $-$ one way relation: $\mathrm{encryption_key} := F(\mathrm{decryption_key})$
	- $-$ decryption key: private, usual notation: sk
	- $-$ encryption key: public (\approx not secret), usual notation: pk

 $\mathrm{Dec}_{\mathrm{sk}}(\mathrm{Enc}_{\mathrm{pk}}(M)) = M$

Other options:

multiple decryption keys:

- \rightarrow $\,$ in order to recover the plaintext all decryption keys must be used (multiparty protocol)
	- splitting risk of key capture: two or more devices involved
	- •example: e-voting (cascade of decryption servers):

 $\mathrm{Dec}_{\mathrm{sk}_2}(\mathrm{Dec}_{\mathrm{sk}_1}(\mathrm{Enc}_{\mathrm{pk}}(M))) = M$

Asymmetric encryption versus CPA-IND

- everybody can encrypt, so automatically in the scenario of attack
- •• after presenting $C = \mathrm{Enc}_{\mathrm{pk}}(M_b)$ and M_0, M_1 the adversary could encrypt M_0, M_1 and compare with $C\,$ – winning the game for deterministic $\rm Enc$

So \rm{Enc} should be non-deterministic, with high entropy

CCA-IND

- \bullet decryption scenario such as for symmetric encryption (requires secret key)
- \bullet deriving sk from ^p^k would immediately let the adversary to win CCA-IND and CPA-IND games

ElGamal public key encryption

Keys: sk generated at random, $\mathrm{pk} := g^x$

Encryption of m

- i. choose k at random
- ii. C := $(\text{pk}^k \cdot m, g^k)$

Decryption of C $=$ (a,b)

calculate $m\!:=\!a/b^{\rm sk}$

correctness: $\frac{a}{b^{\textbf{sk}}}$ $\equiv \frac{\rm pk}{}$ $\frac{k}{m}$. $\frac{\mathrm{dk}^k \cdot m}{(g^k)^{\mathrm{sk}}}$ $=$ $\frac{\mathrm{pk}}{(g^k)}$ $\frac{k}{m}$. $\frac{\partial \mathrm{k}^k \cdot m}{(g^\mathrm{sk})^k}=\frac{\mathrm{pk}}{\mathrm{p}}$ $k \cdot m$ $\frac{1}{\mathbf{p}\mathbf{k}^{k}}=m$

Which assumption needed?

Security of ElGamal

one can decrypt \Rightarrow one can solve CDH:

given (g, g^a, g^k)

- create a "ciphertext" (z, g^k) for z chosen at random
- − $-$ use algorithm deriving the corresponding plaintext m for public key g^a
- −- then $z = g^{a \cdot k} \cdot m$, so $g^{a \cdot k} = z/m$

Remark: there are groups where DDH is easy but CDH is hard

\textsf{DDH} easy \Rightarrow ElGamal encryption broken

- −given a ciphertext (a, b) and a candidate plaintext m
- −goal: check if (a, b) encrypts m
- − $-$ take $(g, \mathrm{pk}, b, a/m)$ and test via DDH Oracle: "yes"⇔ this is a ciphertext of m

Security of ElGamal versus KEA1 Assumption

- −given a ciphertext (a, b) and the public key pk
- − $-$ successful decryption is equivalent to computing a tuple $(g, \mathrm{pk}, b, a/m)$

 $(g, \mathrm{pk}, b, a/m) = (g, \mathrm{pk}, g^k, \mathrm{pk}^k)$

KEA1

given (a,b,c) is it possible to create (a,b,c,d) which is a DH tuple?

KEA1

in some cases it is possible:

- − $-$ if you know k such that $b = a^k$ then it suffices to take $d := c^k$
- −are there any other possibilities if c is chosen at random?

KEA1 Assumption:

if for $\,$ $\,a,b$ and $\,c$ – where $\,c$ is chosen at random — you can provide d such that $\,(a,b,c,d)$ is ^a DH tuple

⇒

you may run an Extractor that yields k such that $b\!=\!a^k$

Remarks:

- − "no situations in gray zone":, either you know an exponent and can create DH tuple or you cannot
- −be careful: similar assumptions turn out to be false
- −KEA1 is in practice the basic assumption for many schemes

ElGamal re-encryption

given a ciphertext (a,b) for public key pk one can re-encrypt it with a random t :

 $(c,d) := (a \cdot \mathrm{pk}^t, b \cdot g^t)$

universal re-encryption: What if **pk** unknown?

− $-$ ciphertext of m

> $(\mathbf{p}\mathbf{k}^k\!\cdot m,g^k,\mathbf{p}\mathbf{k}^n,g^n)$ $^{\,n)}$

−- re-encryption of (a, b, c, d)

> $(a',b',c',d')\,{:=}\,(a\cdot c^t,b\cdot d^t, c^u, d^u)$ $^u)$

Mixing Server

input: ciphertexts $C_1, C_2, ..., C_m$

output: the same ciphertexts after re-encryption in ^a random order

Applications:

- i. e-voting
- ii. anonymous communication

 \Leftarrow cascade of re-encryption servers

Correctness of cascade of re-encryption servers:

Randomized Partial Checking

given cascade of MIX servers: $S_1, S_2, ..., S_m$ processing n ciphertexts

Phase 1

- − $-$ the controller chooses $A \subset \{1, ..., n\}$ of cardinality $n/2$
- $-$ for each $i \in A$, server S_1 reveals re-encryption exponent for the i th ciphertext

 \Rightarrow links to $n/2$ inputs of S_2 revealed: the controller re-encrypts and checks the result

Phase 2

− $S_2\;$ reveals the re-encryption exponents for those input ciphertexts that are not linked after phase 1

On ^a picture:

Result after RPC:

separate mixing

- − the ciphertexts with index \in A
- −the ciphertext with index $\notin A$

Then do the same for S_2, S_3, S_4 , then for $S_4, S_5, S_6,$

Identity based encryption

background: learning the public key of the recipient may require effort and Public Key Infrastructure

idea: user ID as the public key

how to make it real???

Pairings - algebraic tools

- groups G_1 , G_2 and G_T , cyclic, generators g_1 and g_2 of G_1 , G_2
- •- bilinear pairing mapping $e\colon G_1\times G_2 {\longrightarrow} \, G_T$
	- **bilinearity:** $e(k \cdot A, m \cdot B) = e(A, B)^{k \cdot m}$ (additive notation in G_1 , G_2 and multiplicative for G_T
	- **non-degenerate**: $e(g_1, g_2) \neq 1$ (in G_T)

and \emph{e} easy to compute

Classification: $G_1 = G_2$ – type 1 pairing

 $G_1 \neq G_2$ but we know a homomorphism $h: G_1 \rightarrow G_2$ – type 2 pairing

no homomorphism between G_1 and G_2 is known - type 3 pairing

DDH and pairings

•DDH assumption is false for type-1 pairings:

 (A, B, C, D) is a DH tuple iff $e(B, C) = e(A, D)$

 \rightarrow indeed, if $B = m \cdot A$, $C = k \cdot A$, $D = (k \cdot m) \cdot A$, then

 $e(B, C) = e(m \cdot A, k \cdot A) = e(A, A)^{m \cdot k}$

$$
e(A, D) = e(A, (k \cdot m) \cdot A) = e(A, A)^{m \cdot k}
$$

nevertheless, $\,$ CDH might be hard in $G_1!$

Identity based encryption (IBE) - example: Boneh-Franklin scheme

 $\operatorname{\mathsf{Key}}$ Generation Center – a user obtains a private key after authenticating themself against KGC

setup:

- $-$ pairing $e: G \times G \rightarrow G_T$, P a generator of G
- − $-$ master private key s for KGC, master public key: $K := s \cdot P$
- − s random, $|K - \mathsf{public}$ system parameter
- − $-$ hash functions H_1 mapping into $G \setminus \{0\}$ and H_2 mapping from G_T

Generation of secret keys for the user:

user with **official identifier** ID:

(e.g. Personal Identity Number, registry number for enterprises...)

- − $-$ user public key: Q_{ID} := $H_1(\text{ID})$ (element of group G)
- −- user secret key: $D_{\text{ID}} := s \cdot Q_{\text{ID}}$

(KGC must be honest!)

Encryption of message m for user ID

- 1. $Q_{\text{ID}} := H_1(\text{ID})$, $g_{\text{ID}} := e(Q_{\text{ID}}, K)$
- 2. choose r at random, $U := r \cdot P$
- 3. $v := m \oplus H_2(g_{\text{ID}}^r)$
- 4. output (U,v)

Decryption of (U, v)

 $1. \ \ z:=e(U,D_{\mathrm{ID}}) \ \ \textsf{note that:}$

 $e(U, D_{\text{ID}}) = e(r \cdot P, s \cdot Q_{\text{ID}}) = e(P, Q_{\text{ID}})^{r \cdot s} = e(s \cdot P, Q_{\text{ID}})^{r} = e(K, Q_{\text{ID}})^{r} = g_{\text{ID}}^{r}$

2. $m := v \oplus H_2(z)$

Security - Bilinear Diffie-Hellman Assumption (BDH)

given: $a \cdot P$, $b \cdot P$, $c \cdot P$

sought: $e(P, P)^{a \cdot b \cdot c}$

BDH Assumption

it is infeasible to solve BDH in ^a ^given group

Theorem

Boneh-Franklin IBE scheme is semantically secure for ROM provided that BDH Assumptionholds.

RSA

- −based on RSA numbers: $n = p \cdot q$, where p and q are large prime numbers
- the function $F(p,q) = p \cdot q$ is a one-way function for large primes p,q

Group used:

- G the elements co-prime with n with multiplication modulo n
- − $-\phi(n) = (p-1) \cdot (q-1)$ elements in $G \qquad (n-p-q+1)$

computations possible according to Chinese Remainder Theorem:

 $a \rightarrow (a \mod p, a \mod q)$

computing $z=a\cdot b \bmod n$:

i. z_p := $a \cdot b \mod p$

ii. z_q := $a \cdot b \mod q$

iii. reconstruct z from z_p and z_q according to ChRT:

− compute m_p, m_q such that $m_p \cdot p + m_q \cdot q = 1$ according to Euclidean algorithm for GCD

 $-z:=z_p\cdot m_q\cdot q+z_q\cdot m_p\cdot p\ \mathrm{mod}\ n$

RSA generation

- i. choose odd number p of bitlength \ldots (at least 1024) at random
	- 1. test if \overline{p} is prime $\,$ (probabilistic prime number test)
	- 2. if not prime, then $p := p + 2$ and goto 1
- $\,$ ii. the same for q
- iii. $n := p \cdot q$

Critical points:

- − choice of initial values for the search : if predictable then p and q predictable
- − consequence: something like 6% of RSA moduli in appear in more than ¹ certificate of different owners
- −failures of PRIME testing possible: especially if testing time reduced

Primality testing:

- −step 1: fast sieve: test small factors for quick reject (most composite numbers have small factors!)
- −step 2: probabilistic test

example: <mark>Miller-Rabin</mark> test:

background:

- if n is prime, then \mathbb{Z}_n^* is cyclic with $n-1$ elements, there are two roots of one: 1 and -1
- •• if n is composite, then there at least 4 roots of 1

Algorithm of Miller-Rabin test

- − repeat ... times:
	- i. choose $a < n$ at random
	- ii. $a := a^d \bmod n$
	- iii. repeat until $a = -1 \bmod n$:
		- $a := a^2 \bmod n$
		- $-$ if $a = 1$ then return(composite) and abort
- − return(prime)

where $n - 1 = 2^t \cdot d$

Issues

- this is ^a Monte Carlo algorithm: the output "prime" can be incorrect
- •• a single iteration witnesses that a composite number is composite with pbb $\frac{3}{4}$ or higher, but $\frac{3}{4}$ is the only guarantee
- •to get ^a strong evidence many iterations needed

moreover: operations on big numbers, many false candidates rejected until one n passes the test

 \Rightarrow many software products neglect the test and, for example, run only Fermat test:

choose a at random and test whether $a^{n-1} = 1 \bmod n$

(Fermat theorem holds for prime numbers $n,\ ...$ but also for some composite numbers)

Encryption of \bm{m}

- $1.~m_0\!:=\!\text{encode}(m)$ get a number $m_0\!<\!n^-$ (from binary representation via some padding)
- 2. $\text{Enc}_{n,e}(m) = m_0^e \bmod n$

Decryption of \bm{c}

- 1. compute m_0 := $c^d \bmod n$
- 2. $m := \text{encode}^{-1}(m_0)$

Magic

$$
c^{d} = (m_0^e)^d = m_0^{e \cdot d} = m_0^{1+i \cdot (p-1)(q-1)} = m_0 \cdot m_0^{i(p-1)(q-1)} = m_0
$$

the last equality follows from the fact that

- − $- Z_n^*$ has $(p-1)(q-1)$ elements
- −if a group has k elements, then $a^k=1$ for each element a from the group (Euler's Theorem)

Manipulations

given a ciphertext \boldsymbol{c} one can manipulate the plaintext

example: multiply the plaintext by 2:

- 1. compute $z := 2^e \bmod n$
- 2. calculate $c' \! := \! z \cdot c \bmod n$

the plaintext for c^\prime :

 $c'^d = (2^e \cdot c)^d = 2^{e \cdot d} \cdot c^d = 2 \cdot c^d = 2 \cdot \text{plaintext} \bmod n$

 $\mathbf{O}\mathsf{E}\mathbf{A}\mathsf{P}\text{-}\mathbf{R}\mathsf{S}\mathbf{A}$ encoding for RSA number n of bitlength N : ${\bf given\colon}$ parameters k_0, k_1 , message m of length $N-k_0-k_1$, hash functions G,F : encoding procedure:

i. m' $=$ messsage m with k_1 zeroes appended: m' $=$ $m00....0$ <mark>ii. generate k_0 bit string r at random</mark> iii. z $:=$ $G(r)$ $($ output has $N - k_0$ bits $)$ iv. $X := m' \oplus z$ v. $Y := H(X) \oplus r$ <mark>vi</mark>. return X, Y decoding:

i. $r := Y \oplus H(X)$ ii. $m'\!:=\!X\oplus G(r)\;$ (if m' has no suffix of k_1 zeroes then reject, otherwise truncate zeroes)

Features of OEAP

1. for a random X,Y the decoding will abort with pbb $\approx\!1/2^{k_1}$

 $k_1 = 40$ practically reduces CCA to CPA (the decryption oracle will return "error" repeatedly)

2. possibility for subliminal channel:

parameter r can be chosen freely, for example:

 $r := \mathrm{Enc}_{K}(\text{hidden message})$

RSA security

• not true that there is only one matching secret key:

 d and $d + \text{LCM}(p - 1, q - 1)$ are equivalent

- •• factorization of $n \Rightarrow$ breaking public key
- •• finding private key gives factorization $e \cdot d = 1 \bmod (p-1)(q-1)$

$$
e \cdot d = 1 + i \cdot (p - 1)(q - 1) = 1 + i \cdot (n - p - q + 1)
$$

 i can be calculated, then we have $p+q$

 $n = p \cdot ((\dots - p))$ – equality of degree 2

But maybe it is possible to compute the plaintext without the secret key?equivalent problem:

calculate the e th root of \overline{c} is

RSA Assumption

it is infeasible unless you know d such that $e\cdot d\!=\!1\,\mathrm{mod}\,(p-1)(q-1)$)

Post-quantum – example: McEllice

based on linear algebra, random error correcting codes

- (n, k) $-$ linear Error Correcting Codes:
- − $n \times k$ generator matrix G given a word w of length k , its code is $G \cdot w^T$ of length n
- − $-$ property needed: for every v the Hamming weight of $G\cdot v^T$ is either 0 or greater than t
- − \Rightarrow the minimal distance between codewords is at least $t+1$:

 $G\cdot v^T$ ${}^T\,\oplus\, G\cdot w^T$ $T=G\cdot(v\oplus w)^T$

−decoding algorithms: different depending on the ECC

McEliece Encryption - key generation

- ${\bf 1}.$ choose a generator matrix G on $(n,k)-$ linear code (from some family) for correcting t errors
- 2. choose at random $\;k\times k$ non-singular matrix S

3. choose at random $n \times n$ permutation matrix P

4. $H := S \cdot G \cdot P$

public key: (H,t)

 $\bm{{\mathsf{private}}}$ key: S,P and decoding algorithm A corresponding to G

Encryption of m $(k$ -bit string)

1. $c_0 := m \cdot H$

2. flip t bits of c_0 at random positions $\,$ (creating t errors in the final code)

 $c := c_0 \oplus e$ where e is an error vector of Hamming weight t

Decryption

1. $c' := c \cdot P^{-1}$

2. decode the codeword c' with algorithm A to m^\prime

3. $m := m' \cdot S^{-1}$

why the result is correct?

$$
c \cdot P^{-1} = (c_0 \oplus e) \cdot P^{-1} = c_0 \cdot P^{-1} \oplus e \cdot P^{-1}
$$

so it is $c_0\cdot P^{-1}\oplus e'$ where error vector e' has weight t

Pros and cons

- "quantum resistant" not to be broken by Shor algorithms (like RSA, DL)
- long studied (weak variants broken long time ago...)
- related to hard computational problems (Knapsack, LPN)

Cons:

- size
- use of randomness, an opportunity for covert channels