CRYPTOGRAPHY LECTURE, 2023,

Master level

Mirosław Kutyłowski

Asymmetric Encryption

Fundamental difference

- decryption and encryption key different
- one way relation: encryption_key := $F(\text{decryption}_key)$
 - decryption key: private, usual notation: sk
 - encryption key: public (\approx not secret), usual notation: pk

 $\operatorname{Dec}_{\mathrm{sk}}(\operatorname{Enc}_{\mathrm{pk}}(M)) = M$

Other options:

multiple decryption keys:

- \rightarrow in order to recover the plaintext all decryption keys must be used (multiparty protocol)
 - splitting risk of key capture: two or more devices involved
 - example: e-voting (cascade of decryption servers):

 $\operatorname{Dec}_{\operatorname{sk}_2}(\operatorname{Dec}_{\operatorname{sk}_1}(\operatorname{Enc}_{\operatorname{pk}}(M)) = M$

Asymmetric encryption versus CPA-IND

- everybody can encrypt, so automatically in the scenario of attack
- after presenting $C = \text{Enc}_{pk}(M_b)$ and M_0, M_1 the adversary could encrypt M_0, M_1 and compare with C winning the game for deterministic Enc

So Enc should be non-deterministic, with high entropy

CCA-IND

- decryption scenario such as for symmetric encryption (requires secret key)
- deriving sk from pk would immediately let the adversary to win CCA-IND and CPA-IND games

ElGamal public key encryption

Keys: sk generated at random, $pk := g^x$

Encryption of m

- i. choose k at random
- ii. $C := (\mathrm{pk}^k \cdot m, g^k)$

Decryption of C = (a, b)

calculate $m := a/b^{sk}$

 $\text{correctness: } \frac{a}{b^{\text{sk}}} \!=\! \frac{\text{pk}^k \cdot m}{(g^k)^{\text{sk}}} \!=\! \frac{\text{pk}^k \cdot m}{(g^{\text{sk}})^k} \!=\! \frac{\text{pk}^k \cdot m}{\text{pk}^k} \!=\! m$

Which assumption needed?

Security of ElGamal

one can decrypt \Rightarrow one can solve CDH:

given (g, g^a, g^k)

- create a "ciphertext" (z, g^k) for z chosen at random
- use algorithm deriving the corresponding plaintext m for public key g^a
- then $z=g^{a\cdot k}\cdot m$, so $g^{a\cdot k}\!=\!z/m$

Remark: there are groups where DDH is easy but CDH is hard

DDH easy \Rightarrow ElGamal encryption broken

- given a ciphertext (a, b) and a candidate plaintext m
- goal: check if (a, b) encrypts m
- take (g, pk, b, a/m) and test via DDH Oracle: "yes" \Leftrightarrow this is a ciphertext of m

Security of ElGamal versus KEA1 Assumption

- given a ciphertext (a, b) and the public key pk
- successful decryption is equivalent to computing a tuple $(g, \mathrm{pk}, b, a/m)$

 $(g, \mathrm{pk}, b, a/m) = (g, \mathrm{pk}, g^k, \mathrm{pk}^k)$

KEA1

given (a, b, c) is it possible to create (a, b, c, d) which is a DH tuple?

KEA1

in some cases it is possible:

- if you know k such that $b\!=\!a^k$ then it suffices to take $d\!:=\!c^k$
- are there any other possibilities if c is chosen at random?

KEA1 Assumption:

if for a, b and c – where c is chosen at random — you can provide d such that (a, b, c, d) is a DH tuple

 \Rightarrow

you may run an Extractor that yields k such that $b = a^k$

Remarks:

- "no situations in gray zone":, either you know an exponent and can create DH tuple or you cannot
- be careful: similar assumptions turn out to be false
- KEA1 is in practice the basic assumption for many schemes

ElGamal re-encryption

given a ciphertext (a, b) for public key pk one can re-encrypt it with a random t:

 $(c,d) := (a \cdot \mathbf{pk}^t, b \cdot g^t)$

universal re-encryption: What if pk unknown?

- ciphertext of m

 $(\mathbf{pk}^k \cdot m, g^k, \mathbf{pk}^n, g^n)$

- re-encryption of (a, b, c, d)

 $(a',b',c',d') := (a \cdot c^t, b \cdot d^t, c^u, d^u)$

Mixing Server

input: ciphertexts $C_1, C_2, ..., C_m$

output: the same ciphertexts after re-encryption in a random order

Applications:

i. e-voting

ii. anonymous communication

 \leftarrow cascade of re-encryption servers

Correctness of cascade of re-encryption servers:

Randomized Partial Checking

given cascade of MIX servers: $S_1, S_2, ..., S_m$ processing n ciphertexts

Phase 1

- the controller chooses $A \subset \{1, ..., n\}$ of cardinality n/2
- for each $i \in A$, server S_1 reveals re-encryption exponent for the *i*th ciphertext

 \Rightarrow links to n/2 inputs of S_2 revealed: the controller re-encrypts and checks the result

Phase 2

- $S_{\rm 2}$ reveals the re-encryption exponents for those input ciphertexts that are not linked after phase 1

On a picture:

Result after RPC:

separate mixing

- the ciphertexts with index $\in A$
- the ciphertext with index $\notin A$

Then do the same for S_2, S_3, S_4 , then for S_4, S_5, S_6, \ldots

Identity based encryption

background: learning the public key of the recipient may require effort and Public Key Infrastructure

idea: user ID as the public key

how to make it real???

Pairings - algebraic tools

- groups G_1 , G_2 and G_T , cyclic, generators g_1 and g_2 of G_1 , G_2
- bilinear pairing mapping $e: G_1 \times G_2 \longrightarrow G_T$
 - **bilinearity:** $e(k \cdot A, m \cdot B) = e(A, B)^{k \cdot m}$ (additive notation in G_1, G_2 and multiplicative for G_T
 - non-degenerate: $e(g_1, g_2) \neq 1$ (in G_T)

and e easy to compute

Classification: $G_1 = G_2$ – type 1 pairing

 $G_1 \neq G_2$ but we know a homomorphism $h: G_1 \rightarrow G_2$ – type 2 pairing no homomorphism between G_1 and G_2 is known - type 3 pairing

DDH and pairings

• DDH assumption is false for type-1 pairings:

(A, B, C, D) is a DH tuple iff e(B, C) = e(A, D)

 \rightarrow indeed, if $B = m \cdot A$, $C = k \cdot A$, $D = (k \cdot m) \cdot A$, then

 $e(B,C) = e(m \cdot A, k \cdot A) = e(A,A)^{m \cdot k}$

$$e(A, D) = e(A, (k \cdot m) \cdot A) = e(A, A)^{m \cdot k}$$

nevertheless, CDH might be hard in G_1 !

Identity based encryption (IBE) - example: Boneh-Franklin scheme

Key Generation Center – a user obtains a private key after authenticating themself against KGC

setup:

- pairing $e: G \times G \rightarrow G_T$, P a generator of G
- master private key s for KGC, master public key: $K := s \cdot P$
- s random, K public system parameter
- hash functions H_1 mapping into $G \setminus \{0\}$ and H_2 mapping from G_T

Generation of secret keys for the user:

user with official identifier ID:

(e.g. Personal Identity Number, registry number for enterprises...)

- user public key: $Q_{\text{ID}} := H_1(\text{ID})$ (element of group G)
- user secret key: $D_{\mathrm{ID}} := s \cdot Q_{\mathrm{ID}}$

(KGC must be honest!)

Encryption of message m for user ID

- 1. $Q_{\text{ID}} := H_1(\text{ID}), \quad g_{\text{ID}} := e(Q_{\text{ID}}, K)$
- 2. choose r at random, $U := r \cdot P$
- 3. $v := m \oplus H_2(g_{\text{ID}}^r)$
- 4. output (U, v)

Decryption of (U, v)

1. $z := e(U, D_{\text{ID}})$ note that:

 $e(U, D_{\rm ID}) = e(r \cdot P, s \cdot Q_{\rm ID}) = e(P, Q_{\rm ID})^{r \cdot s} = e(s \cdot P, Q_{\rm ID})^r = e(K, Q_{\rm ID})^r = g_{\rm ID}^r$

2. $m := v \oplus H_2(z)$

Security - Bilinear Diffie-Hellman Assumption (BDH)

given: $a \cdot P$, $b \cdot P$, $c \cdot P$

sought: $e(P, P)^{a \cdot b \cdot c}$

BDH Assumption

it is infeasible to solve BDH in a given group

Theorem

Boneh-Franklin IBE scheme is semantically secure for ROM provided that BDH Assumption holds.

RSA

- based on RSA numbers: $n = p \cdot q$, where p and q are large prime numbers
- the function $F(p,q) = p \cdot q$ is a one-way function for large primes p, q

Group used:

- G the elements co-prime with n with multiplication modulo n
- $\phi(n) = (p-1) \cdot (q-1) \text{ elements in } G \qquad (n-p-q+1)$

computations possible according to Chinese Remainder Theorem:

 $a \rightarrow (a \mod p, a \mod q)$

computing $z = a \cdot b \mod n$:

i. $z_p := a \cdot b \mod p$

ii. $z_q := a \cdot b \mod q$

iii. reconstruct z from z_p and z_q according to ChRT:

– compute m_p, m_q such that $m_p \cdot p + m_q \cdot q = 1\,$ according to Euclidean algorithm for GCD

 $- z := z_p \cdot m_q \cdot q + z_q \cdot m_p \cdot p \mod n$

RSA generation

- i. choose odd number p of bitlength ... (at least 1024) at random
 - 1. test if p is prime (probabilistic prime number test)
 - 2. if not prime, then p := p + 2 and goto 1
- ii. the same for q

iii. $n := p \cdot q$

Critical points:

- choice of initial values for the search : if predictable then p and q predictable
- consequence: something like 6% of RSA moduli in appear in more than 1 certificate of different owners
- failures of PRIME testing possible: especially if testing time reduced

Primality testing:

- step 1: fast sieve: test small factors for quick reject (most composite numbers have small factors!)
- step 2: probabilistic test

example: Miller-Rabin test:

background:

- if n is prime, then \mathbb{Z}_n^* is cyclic with n-1 elements, there are two roots of one: 1 and -1
- if n is composite, then there at least 4 roots of 1

Algorithm of Miller-Rabin test

- repeat ... times:
 - i. choose a < n at random
 - ii. $a := a^d \mod n$
 - iii. repeat until $a = -1 \mod n$:
 - $-a := a^2 \mod n$
 - if a = 1 then return(composite) and abort
- return(prime)

where $n - 1 = 2^t \cdot d$

Issues

- this is a Monte Carlo algorithm: the output "prime" can be incorrect
- a single iteration witnesses that a composite number is composite with pbb $\frac{3}{4}$ or higher, but $\frac{3}{4}$ is the only guarantee
- to get a strong evidence many iterations needed

moreover: operations on big numbers, many false candidates rejected until one n passes the test

 \Rightarrow many software products neglect the test and, for example, run only Fermat test:

choose *a* at random and test whether $a^{n-1} = 1 \mod n$

(Fermat theorem holds for prime numbers n, but also for some composite numbers)

Encryption of m

1. $m_0 := \text{encode}(m)$ - get a number $m_0 < n$ (from binary representation via some padding)

2. $\operatorname{Enc}_{n,e}(m) = m_0^e \mod n$

Decryption of c

- 1. compute $m_0 := c^d \mod n$
- 2. $m := \text{encode}^{-1}(m_0)$

Magic

$$c^{d} = (m_{0}^{e})^{d} = m_{0}^{e \cdot d} = m_{0}^{1+i \cdot (p-1)(q-1)} = m_{0} \cdot m_{0}^{i(p-1)(q-1)} = m_{0}$$

the last equality follows from the fact that

- Z_n^* has (p-1)(q-1) elements
- if a group has k elements, then $a^k = 1$ for each element a from the group (Euler's Theorem)

Manipulations

given a ciphertext c one can manipulate the plaintext

example: multiply the plaintext by 2:

- 1. compute $z := 2^e \mod n$
- 2. calculate $c' := z \cdot c \mod n$

the plaintext for c':

 $c'^d = (2^e \cdot c)^d = 2^{e \cdot d} \cdot c^d = 2 \cdot c^d = 2 \cdot \text{plaintext mod } n$

OEAP-RSA encoding for RSA number n of bitlength N: **given:** parameters k_0, k_1 , message m of length $N - k_0 - k_1$, hash functions G, F: **encoding procedure:**

i. m' = messsage m with k_1 zeroes appended: m' = m00...0ii. generate k_0 bit string r at random iii. z := G(r) (output has $N - k_0$ bits) iv. $X := m' \oplus z$ v. $Y := H(X) \oplus r$ vi. return X, Ydecoding:

i. $r := Y \oplus H(X)$ ii. $m' := X \oplus G(r)$ (if m' has no suffix of k_1 zeroes then reject, otherwise truncate zeroes)

Features of OEAP

1. for a random X, Y the decoding will abort with pbb $\approx 1/2^{k_1}$

 $k_1 = 40$ practically reduces CCA to CPA (the decryption oracle will return "error" repeatedly)

2. possibility for subliminal channel:

parameter r can be chosen freely, for example:

 $r := \operatorname{Enc}_K(\operatorname{hidden} \operatorname{message})$

RSA security

• not true that there is only one matching secret key:

d and d + LCM(p-1, q-1) are equivalent

- factorization of $n \Rightarrow$ breaking public key
- finding private key gives factorization $e \cdot d = 1 \mod (p-1)(q-1)$

$$e \cdot d = 1 + i \cdot (p - 1)(q - 1) = 1 + i \cdot (n - p - q + 1)$$

i can be calculated, then we have p+q

$$n = p \cdot ((\dots - p))$$
 – equality of degree 2

But maybe it is possible to compute the plaintext without the secret key? equivalent problem:

calculate the eth root of c is

RSA Assumption

it is infeasible unless you know d such that $e \cdot d = 1 \mod (p-1)(q-1)$)

Post-quantum – example: McEllice

based on linear algebra, random error correcting codes

(n, k) – linear Error Correcting Codes:

- $-n \times k$ generator matrix G given a word w of length k, its code is $G \cdot w^T$ of length n
- property needed: for every v the Hamming weight of $G \cdot v^T$ is either 0 or greater than t
- \Rightarrow the minimal distance between codewords is at least t + 1:

 $G \cdot v^T \oplus G \cdot w^T = G \cdot (v \oplus w)^T$

- decoding algorithms: different depending on the ECC

McEliece Encryption - key generation

- 1. choose a generator matrix G on (n, k) linear code (from some family) for correcting t errors
- 2. choose at random $k \times k$ non-singular matrix S

3. choose at random $n \times n$ permutation matrix P

4. $H := S \cdot G \cdot P$

public key: (H, t)

private key: S, P and decoding algorithm A corresponding to G

Encryption of m (*k*-bit string)

1. $c_0 := m \cdot H$

2. flip t bits of c_0 at random positions (creating t errors in the final code)

 $c := c_0 \oplus e$ where e is an error vector of Hamming weight t

Decryption

1. $c' := c \cdot P^{-1}$

2. decode the codeword c' with algorithm A to m'

3. $m := m' \cdot S^{-1}$

why the result is correct?

$$c \cdot P^{-1} = (c_0 \oplus e) \cdot P^{-1} = c_0 \cdot P^{-1} \oplus e \cdot P^{-1}$$

so it is $c_0 \cdot P^{-1} \oplus e'$ where error vector e' has weight t

Pros and cons

- "quantum resistant" not to be broken by Shor algorithms (like RSA, DL)
- long studied (weak variants broken long time ago...)
- related to hard computational problems (Knapsack, LPN)

Cons:

- size
- use of randomness, an opportunity for covert channels