CRYPTOGRAPHY LECTURE, 2023,
Master level

Mirostaw Kutyfowski

Asymmetric Encryption

Fundamental difference

— decryption and encryption key different

— one way relation: encryption_key := F'(decryption _key)
— decryption key: private, usual notation: sk

— encryption key: public (~not secret), usual notation: pk

Deca(Encp(M)) =M

Other options:

multiple decryption keys:

— in order to recover the plaintext all decryption keys must be used (multiparty protocol)
e splitting risk of key capture: two or more devices involved

e example: e-voting (cascade of decryption servers):

Decg,(Decg, (Enco(M)) = M

Asymmetric encryption versus CPA-IND
e everybody can encrypt, so automatically in the scenario of attack

e after presenting C' = Enc(M;) and My, M, the adversary could encrypt M;, M; and
compare with C' — winning the game for deterministic Enc

So Enc should be non-deterministic, with high entropy

CCA-IND

e decryption scenario such as for symmetric encryption (requires secret key)

deriving sk from pk would immediately let the adversary to win CCA-IND and CPA-IND
games

ElGamal public key encryption
Keys: sk generated at random, pk:= ¢”
Encryption of m

I. choose k at random

e = (pkEami gD
Decryption of C = (a, b)
calculate m :=a /0%

e Kk . Kk .
o e M e A e LN SR S

B T R s T T A

Which assumption needed?

Security of EIGamal

one can decrypt = one can solve CDH:

given (g, 9", g")

— create a “ciphertext” (z, ¢g¥) for 2 chosen at random

— use algorithm deriving the corresponding plaintext m for public key ¢°

— then z=¢%*-m,s0 ¢g**=2z/m

Remark: there are groups where DDH is easy but CDH is hard

DDH easy = ElGamal encryption broken
— given a ciphertext (a,b) and a candidate plaintext m
— goal: check if (a,b) encrypts m

— take (g,pk,b,a/m) and test via DDH Oracle: "yes'< this is a ciphertext of m

Security of ElIGamal versus KEA1 Assumption
— given a ciphertext (a,b) and the public key pk

— successful decryption is equivalent to computing a tuple (g, pk,b,a/m)

(g,pk,b,a/m)=(g,pk, g*, pk¥)

KEA1

given (a,b,c) is it possible to create (a,b, c,d) which is a DH tuple?

KEA1
in some cases it is possible:
— if you know k such that b= a” then it suffices to take d:=cF

— are there any other possibilities if ¢ is chosen at random?

KEA1 Assumption:

if for a,b and ¢ — where ¢ is chosen at random — you can provide d such that (a,b,¢,d)is
a DH tuple

=

you may run an Extractor that yields k such that b= a”

Remarks:

— "no situations in gray zone':, either you know an exponent and can create DH tuple or
you cannot

— be careful: similar assumptions turn out to be false

— KEAL1 is in practice the basic assumption for many schemes

ElGamal re-encryption
given a ciphertext (a,b) for public key pk one can re-encrypt it with a random ¢:
(¢,d):=(a-pk’,b- ¢)

universal re-encryption: What if pk unknown?
— ciphertext of m

(pk*-m, g*, pk”, g")
— re-encryption of (a,b,c,d)

(o bl o= b daed)

10

Mixing Server
input: ciphertexts C1,C5, ..., C,,

output: the same ciphertexts after re-encryption in a random order

Applications:
I. e-voting
Il. anonymous communication

< cascade of re-encryption servers

11

Correctness of cascade of re-encryption servers:
Randomized Partial Checking
given cascade of MIX servers: Sy, 5s, ..., S,, processing n ciphertexts
Phase 1
— the controller chooses AC{1,....,n} of cardinality n/2
— for each 7 € A, server S; reveals re-encryption exponent for the ith ciphertext
= links to n/2 inputs of S5 revealed: the controller re-encrypts and checks the result

Phase 2

— S5 reveals the re-encryption exponents for those input ciphertexts that are not linked
after phase 1

2

On a picture:

13

Result after RPC:

separate mixing

— the ciphertexts with index €A

— the ciphertext with index Z A

Then do the same for S5, S3, Sy, then for Sy, S5, Se, ...

14

Identity based encryption

background: learning the public key of the recipient may require effort and Public Key
Infrastructure

idea: user ID as the public key

how to make it real???

S

Pairings - algebraic tools
e groups GG1, Go and G, cyclic, generators g; and ¢ of G4, G>
e bilinear pairing mapping e: G; X Go — G

— bilinearity: e(k - A, m - B) = e(4, B)*™ (additive notation in Gy, G2 and
multiplicative for G

— non-degenerate: ¢(g;, g2) # 1 (in G7)

and e easy to compute

Classification: Gy =G5 — type 1 pairing

G1# G2 but we know a homomorphism h: G; — G2 — type 2 pairing

no homomorphism between (G; and G5 is known - type 3 pairing

16

DDH and pairings

e DDH assumption is false for type-1 pairings:
(A,B,C,D) is a DH tuple iff e(B,C)=e(A,D)

— indeed, if B=m-A, C=k-A, D=(k-m)-A, then
e(B,C)=e(m-A,k-A)=e(A, A)™*
e(A,D)=e(A, (k-m)-A)=e(A, A)™*

nevertheless, CDH might be hard in G, !

iz

Identity based encryption (IBE) - example: Boneh-Franklin scheme

Key Generation Center — a user obtains a private key after authenticating themself against

KGC

setup:

— pairing e:G X G— G, P - a generator of GG

— master private key s for KGC, master public key: K :=5s- P
— s random, K - public system parameter

— hash functions H; mapping into G\ {0} and H5 mapping from G

18

Generation of secret keys for the user:

user with official identifier ID:

(e.g. Personal Identity Number, registry number for enterprises...)
— user public key: Qp:= H{(ID) (element of group G)

— user secret key: Dip:=s- Qmp

(KGC must be honest!)

19

Encryption of message m for user 1D
1. Qm:=H,(ID), gip:=e(Qm, K)
2. choose r at random, U :=7r- P
3. v:i=m®Hs(gp)

4. output (U, v)

20

Decryption of (U, v)

1. z:=e(U, Dip) note that:

efblsDhipl=elnslrsaOplieetR Cm)s =ete=b Qnll==el It 20ih) =uip

2im— v & Hi(z)

2L

Security - Bilinear Diffie-Hellman Assumption (BDH)

given:a-P,b-P, c-P

sought: e(P, P)*%¢

BDH Assumption

it is infeasible to solve BDH in a given group

Theorem

Boneh-Franklin IBE scheme is semantically secure for ROM provided that BDH Assumption
holds.

20

RSA

— based on RSA numbers: n=p- q, where p and ¢ are large prime numbers
— the function F(p, q)=p- q is a one-way function for large primes p, ¢
Group used:

(7 - the elements co-prime with n with multiplication modulo n

— ¢(n)=(p—1)-(¢g—1) elementsinG (n—p—q+1)

23

computations possible according to Chinese Remainder Theorem:
a — (amodp,amodq)
computing z=a-b modn:
I. zp:=a-bmodp
il. 2g:=a-bmod ¢
iii. reconstruct z from z, and z, according to ChRT:

— compute m,, m, such that m, - p+m,- ¢=1 according to Euclidean algorithm for

GCD

e e e eI S THOCTE

24

RSA generation

I. choose odd number p of bitlength ... (at least 1024) at random
1. test if pis prime (probabilistic prime number test)
2. if not prime, then p:=p—+2 and goto 1

ii. the same for ¢

HERS = a g

Critical points:

— choice of initial values for the search : if predictable then p and ¢ predictable

consequence: something like 6% of RSA moduli in appear in more than 1 certificate of different
owners

— failures of PRIME testing possible: especially if testing time reduced

25

Primality testing:

step 1: fast sieve: test small factors for quick reject (most composite numbers have small factors!)

— step 2: probabilistic test
example: Miller-Rabin test:

background:

e if n is prime, then 7Z, is cyclic with n — 1 elements, there are two roots of one: 1 and -1

e if n is composite, then there at least 4 roots of 1

26

Algorithm of Miller-Rabin test
— repeat ... times:
I. choose a < n at random

dmodn

ISty
ilii. repeat until a = —1 mod n:

= R o)

— if a=1 then return(composite) and abort

— return(prime)

where n —1=2t-(

27

Issues
e this is a Monte Carlo algorithm: the output “prime” can be incorrect

e a single iteration witnesses that a composite number is composite with pbb % or higher,
but % is the only guarantee

e to get a strong evidence many iterations needed

moreover: operations on big numbers, many false candidates rejected until one n passes
the test

= many software products neglect the test and, for example, run only Fermat test:
choose a at random and test whether ¢! =1 modn

(Fermat theorem holds for prime numbers n, but also for some composite numbers)

28

Encryption of m

1. mg:=encode(m) - get a number mo<n (from binary representation via some padding)
2. Enc,, o(m) =mg§modn

Decryption of ¢

1. compute mg:=c? modn

2. m:=encode*(my)

29

Magic

d = froeNd i redi— o I lp=1){g=1) i(p—=1)(¢=1) _
E=dmg)S =g~ =1y =mg-my =my

the last equality follows from the fact that

— Z} has (p—1)(q—1) elements

— if a group has k elements, then a* =1 for each element afrom the group (Euler's Theorem)

30

Manipulations
given a ciphertext ¢ one can manipulate the plaintext
example: multiply the plaintext by 2:

1. compute z:=2°modn

2. calculate ¢:=z-cmodn

the plaintext for ¢

¢?=(2¢.¢)1=2¢1. A =2. ¢?=2. plaintext mod n

31

OEAP-RSA encoding for RSA number n of bitlength V:
given: parameters ko, k1 , message m of length N — ko — k1, hash functions G, F
encoding procedure:
I. m' = messsage m with k; zeroes appended: m’=m00....0
Ii. generate kg bit string r at random
iii. z:=G(r) (output has N — kg bits)
iv. X :=m'&Pz
v.Y=H(X)&r
vi. return X .Y
decoding:
R e A R

i.m" ==X ®&G(r) (if m’ has no suffix of ky zeroes then reject, otherwise truncate zeroes)

32

Features of OEAP
1. for a random X ,Y the decoding will abort with pbb ~1 /2"

k1 = 40 practically reduces CCA to CPA (the decryption oracle will return “error”
repeatedly)

2. possibility for subliminal channel:

parameter r can be chosen freely, for example:

r:= Encg(hidden message)

33

RSA security

e not true that there is only one matching secret key:
d and d+LCM(p—1,q—1) are equivalent
e factorization of n = breaking public key

e finding private key gives factorization e-d=1mod(p—1)(qg—1))
ed=1+i-(p—1)(qg—1)=14+i-(n—p—q+1)

i can be calculated, then we have p+ ¢

34

n=p-((...—p)) —equality of degree 2

But maybe it is possible to compute the plaintext without the secret key?
equivalent problem:

calculate the eth root of ¢ is

RSA Assumption

it is infeasible unless you know d such that e-d=1mod (p—1)(qg—1))

35

Post-quantum — example: McEllice

based on linear algebra, random error correcting codes

(n, k) — linear Error Correcting Codes:

— n x k generator matrix G given a word w of length k, its code is G- w’ of length n
— property needed: for every v the Hamming weight of G - v’ is either 0 or greater than ¢

— = the minimal distance between codewords is at least ¢ + 1;
Gv'oG w' =G - (vow)!

— decoding algorithms: different depending on the ECC

36

McEliece Encryption - key generation

1. choose a generator matrix G on (n, k) — linear code (from some family) for correcting ¢
errors

2. choose at random £k x k non-singular matrix S
3. choose at random n x n permutation matrix P
S e e € 10 o

public key: (H,t)

private key: S, P and decoding algorithm A corresponding to GG

37

Encryption of m (k-bit string)
1= Co-=—MmM- H
2. flip t bits of ¢y at random positions (creating ¢ errors in the final code)

c:=coP e where e is an error vector of Hamming weight ¢

Decryption
el e
2. decode the codeword ¢’ with algorithm A to m/’
Fmi=ml o9t

why the result is correct?
c-Pl=(cy®e) - Pl=cy-Plpe.- P!

so it is co- P~1 @ e’ where error vector ¢’ has weight ¢

38

Pros and cons

e "quantum resistant’ — not to be broken by Shor algorithms (like RSA, DL)
e long studied (weak variants broken long time ago...)

e related to hard computational problems (Knapsack, LPN)
Cons:

® size

e use of randomness, an opportunity for covert channels

39

