
CRYPTOGRAPHY LECTURE, 2023,

Master level

Mirosław Kutyłowski

Asymmetric Encryption

Fundamental difference

− decryption and encryption key different

− one way relation: encryption
−

key8 F (decryption−key)

− decryption key: private, usual notation: sk

− encryption key: public (≈not secret), usual notation: pk

Decsk(Encpk(M))=M

1

Other options:

multiple decryption keys:

→ in order to recover the plaintext all decryption keys must be used (multiparty protocol)

• splitting risk of key capture: two or more devices involved

• example: e-voting (cascade of decryption servers):

Decsk2(Decsk1(Encpk(M))=M

2

Asymmetric encryption versus CPA-IND

• everybody can encrypt, so automatically in the scenario of attack

• after presenting C = Encpk(Mb) and M0, M1 the adversary could encrypt M0, M1 and
compare with C – winning the game for deterministic Enc

So Enc should be non-deterministic, with high entropy

CCA-IND

• decryption scenario such as for symmetric encryption (requires secret key)

• deriving sk from pk would immediately let the adversary to win CCA-IND and CPA-IND
games

3

ElGamal public key encryption

Keys: sk generated at random, pk8 gx

Encryption of m

i. choose k at random

ii. C8 (pkk ·m, gk)

Decryption of C =(a, b)

calculate m8 a/bsk

correctness:
a

bsk
=

pkk ·m

(gk)sk
=

pkk ·m

(gsk)k
=

pkk ·m

pkk
=m

Which assumption needed?

4

Security of ElGamal

one can decrypt ⇒ one can solve CDH:

given (g, ga, gk)

− create a “ciphertext” (z, gk) for z chosen at random

− use algorithm deriving the corresponding plaintext m for public key ga

− then z= ga·k ·m , so ga·k= z/m

Remark: there are groups where DDH is easy but CDH is hard

5

DDH easy ⇒ ElGamal encryption broken

− given a ciphertext (a, b) and a candidate plaintext m

− goal: check if (a, b) encrypts m

− take (g, pk, b, a/m) and test via DDH Oracle: “yes”⇔ this is a ciphertext of m

6

Security of ElGamal versus KEA1 Assumption

− given a ciphertext (a, b) and the public key pk

− successful decryption is equivalent to computing a tuple (g, pk, b, a/m)

(g, pk, b, a/m)= (g, pk, gk, pkk)

KEA1

given (a, b, c) is it possible to create (a, b, c, d) which is a DH tuple?

7

KEA1

in some cases it is possible:

− if you know k such that b= ak then it suffices to take d8 ck

− are there any other possibilities if c is chosen at random?

8

KEA1 Assumption:

if for a, b and c – where c is chosen at random — you can provide d such that (a, b, c, d) is
a DH tuple

⇒

you may run an Extractor that yields k such that b= ak

Remarks:

− “no situations in gray zone”:, either you know an exponent and can create DH tuple or
you cannot

− be careful: similar assumptions turn out to be false

− KEA1 is in practice the basic assumption for many schemes

9

ElGamal re-encryption

given a ciphertext (a, b) for public key pk one can re-encrypt it with a random t:

(c, d)8 (a · pkt, b · gt)

universal re-encryption: What if pk unknown?

− ciphertext of m

(pkk ·m, gk, pkn, gn)

− re-encryption of (a, b, c, d)

(a′, b′, c′, d′)8 (a · ct, b · dt, cu, du)

10

Mixing Server

input: ciphertexts C1, C2,
 , Cm

output: the same ciphertexts after re-encryption in a random order

Applications:

i. e-voting

ii. anonymous communication

⇐ cascade of re-encryption servers

11

Correctness of cascade of re-encryption servers:

Randomized Partial Checking

given cascade of MIX servers: S1, S2,
 , Sm processing n ciphertexts

Phase 1

− the controller chooses A⊂{1,
 ., n} of cardinality n/2

− for each i∈A , server S1 reveals re-encryption exponent for the ith ciphertext

⇒ links to n/2 inputs of S2 revealed: the controller re-encrypts and checks the result

Phase 2

− S2 reveals the re-encryption exponents for those input ciphertexts that are not linked
after phase 1

12

On a picture:

13

Result after RPC:

separate mixing

− the ciphertexts with index ∈A

− the ciphertext with index ∈A

Then do the same for S2, S3, S4, then for S4, S5, S6,

14

Identity based encryption

background: learning the public key of the recipient may require effort and Public Key
Infrastructure

idea: user ID as the public key

how to make it real???

15

Pairings - algebraic tools

• groups G1, G2 and GT , cyclic, generators g1 and g2 of G1, G2

• bilinear pairing mapping e:G1×G2� GT

− bilinearity: e(k · A, m · B) = e(A, B)k·m (additive notation in G1, G2 and
multiplicative for GT

− non-degenerate: e(g1, g2)� 1 (in GT)

and e easy to compute

Classification: G1=G2 – type 1 pairing

G1� G2 but we know a homomorphism h:G1→G2 – type 2 pairing

no homomorphism between G1 and G2 is known - type 3 pairing

16

DDH and pairings

• DDH assumption is false for type-1 pairings:

(A,B,C,D) is a DH tuple iff e(B,C)= e(A,D)

→ indeed, if B=m ·A, C = k ·A, D=(k ·m) ·A, then

e(B,C)= e(m ·A, k ·A)= e(A,A)m·k

e(A,D)= e(A, (k ·m) ·A)= e(A,A)m·k

nevertheless, CDH might be hard in G1 !

17

Identity based encryption (IBE) - example: Boneh-Franklin scheme

Key Generation Center – a user obtains a private key after authenticating themself against
KGC

setup:

− pairing e:G×G→GT , P - a generator of G

− master private key s for KGC, master public key: K8 s ·P

− s random, K – public system parameter

− hash functions H1 mapping into G \ {0} and H2 mapping from GT

18

Generation of secret keys for the user:

user with official identifier ID:

(e.g. Personal Identity Number, registry number for enterprises...)

− user public key: QID8 H1(ID) (element of group G)

− user secret key: DID8 s ·QID

(KGC must be honest!)

19

Encryption of message m for user ID

1. QID8 H1(ID), gID8 e(QID, K)

2. choose r at random, U8 r ·P

3. v8 m⊕H2(gID
r)

4. output (U , v)

20

Decryption of (U , v)

1. z8 e(U ,DID) note that:

e(U ,DID)= e(r ·P , s ·QID)= e(P , QID)
r·s= e(s ·P , QID)

r= e(K, QID)
r= gID

r

2.m8 v⊕H2(z)

21

Security - Bilinear Diffie-Hellman Assumption (BDH)

given: a ·P , b ·P , c ·P

sought: e(P , P)a·b·c

BDH Assumption

it is infeasible to solve BDH in a given group

Theorem

Boneh-Franklin IBE scheme is semantically secure for ROM provided that BDH Assumption
holds.

22

RSA

− based on RSA numbers: n= p · q, where p and q are large prime numbers

− the function F (p, q)= p · q is a one-way function for large primes p, q

Group used:

G - the elements co-prime with n with multiplication modulo n

− φ(n)= (p− 1) · (q− 1) elements in G (n− p− q+1)

23

computations possible according to Chinese Remainder Theorem:

a → (amod p, amod q)

computing z= a · bmodn:

i. zp8 a · bmod p

ii. zq8 a · bmod q

iii. reconstruct z from zp and zq according to ChRT:

− compute mp, mq such that mp · p+mq · q = 1 according to Euclidean algorithm for
GCD

− z8 zp ·mq · q+ zq ·mp · pmodn

24

RSA generation

i. choose odd number p of bitlength ... (at least 1024) at random

1. test if p is prime (probabilistic prime number test)

2. if not prime, then p8 p+2 and goto 1

ii. the same for q

iii. n8 p · q

Critical points:

− choice of initial values for the search : if predictable then p and q predictable

− consequence: something like 6% of RSA moduli in appear in more than 1 certificate of different
owners

− failures of PRIME testing possible: especially if testing time reduced

25

Primality testing:

− step 1: fast sieve: test small factors for quick reject (most composite numbers have small factors!)

− step 2: probabilistic test

example: Miller-Rabin test:

background:

• if n is prime, then Zn
∗ is cyclic with n− 1 elements, there are two roots of one: 1 and -1

• if n is composite, then there at least 4 roots of 1

26

Algorithm of Miller-Rabin test

− repeat ... times:

i. choose a<n at random

ii. a8 admodn

iii. repeat until a=−1modn:

− a8 a2 modn

− if a=1 then return(composite) and abort

− return(prime)

where n− 1= 2t · d

27

Issues

• this is a Monte Carlo algorithm: the output “prime” can be incorrect

• a single iteration witnesses that a composite number is composite with pbb
3

4
or higher,

but
3

4
is the only guarantee

• to get a strong evidence many iterations needed

moreover: operations on big numbers, many false candidates rejected until one n passes
the test

⇒ many software products neglect the test and, for example, run only Fermat test:

choose a at random and test whether an−1=1modn

(Fermat theorem holds for prime numbers n, but also for some composite numbers)

28

Encryption of m

1.m08 encode(m) - get a numberm0<n (from binary representation via some padding)

2. Encn,e(m)=m0
e modn

Decryption of c

1. compute m08 cd modn

2.m8 encode−1(m0)

29

Magic

cd=(m0
e)d=m0

e·d=m0
1+i·(p−1)(q−1)=m0 ·m0

i(p−1)(q−1)=m0

the last equality follows from the fact that

− Zn
∗ has (p− 1)(q− 1) elements

− if a group has k elements, then ak=1 for each element a from the group (Euler’s Theorem)

30

Manipulations

given a ciphertext c one can manipulate the plaintext

example: multiply the plaintext by 2:

1. compute z8 2e modn

2. calculate c′8 z · cmodn

the plaintext for c′:

c′
d=(2e · c)d=2e·d · cd=2 · cd=2 · plaintext modn

31

OEAP-RSA encoding for RSA number n of bitlength N :

given: parameters k0, k1 , message m of length N − k0− k1, hash functions G,F :

encoding procedure:

i.m′= messsage m with k1 zeroes appended: m′=m00
 .0

ii. generate k0 bit string r at random

iii. z8 G(r) (output has N − k0 bits)

iv. X8 m′⊕z

v. Y 8 H(X)⊕ r

vi. return X,Y

decoding:

i. r8 Y ⊕H(X)

ii.m′

8 X ⊕G(r) (if m′ has no suffix of k1 zeroes then reject, otherwise truncate zeroes)

32

Features of OEAP

1. for a random X,Y the decoding will abort with pbb ≈1/2k1

k1 = 40 practically reduces CCA to CPA (the decryption oracle will return “error”
repeatedly)

2. possibility for subliminal channel:

parameter r can be chosen freely, for example:

r8 EncK(hiddenmessage)

33

RSA security

• not true that there is only one matching secret key:

d and d+LCM(p− 1, q− 1) are equivalent

• factorization of n ⇒ breaking public key

• finding private key gives factorization e · d=1mod (p− 1)(q− 1))

e · d=1+i · (p− 1)(q− 1)= 1+ i · (n− p− q+1)

i can be calculated, then we have p+ q

34

n= p · ((
 − p)) – equality of degree 2

But maybe it is possible to compute the plaintext without the secret key?

equivalent problem:

calculate the eth root of c is

RSA Assumption

it is infeasible unless you know d such that e · d=1mod (p− 1)(q− 1))

35

Post-quantum – example: McEllice

based on linear algebra, random error correcting codes

(n, k)− linear Error Correcting Codes:

− n× k generator matrix G given a word w of length k, its code is G ·wT of length n

− property needed: for every v the Hamming weight of G · vT is either 0 or greater than t

− ⇒ the minimal distance between codewords is at least t+1:

G · vT ⊕G ·wT =G · (v⊕w)T

− decoding algorithms: different depending on the ECC

36

McEliece Encryption - key generation

1. choose a generator matrix G on (n, k)− linear code (from some family) for correcting t

errors

2. choose at random k× k non-singular matrix S

3. choose at random n×n permutation matrix P

4. H8 S ·G ·P

public key: (H, t)

private key: S, P and decoding algorithm A corresponding to G

37

Encryption of m (k-bit string)

1. c08 m ·H

2. flip t bits of c0 at random positions (creating t errors in the final code)

c8 c0⊕ e where e is an error vector of Hamming weight t

Decryption

1. c′8 c ·P−1

2. decode the codeword c′ with algorithm A to m′

3.m8 m′ ·S−1

why the result is correct?

c ·P−1=(c0⊕ e) ·P−1= c0 ·P
−1⊕ e ·P−1

so it is c0 ·P
−1⊕ e′ where error vector e′ has weight t

38

Pros and cons

• ”quantum resistant” – not to be broken by Shor algorithms (like RSA, DL)

• long studied (weak variants broken long time ago...)

• related to hard computational problems (Knapsack, LPN)

Cons:

• size

• use of randomness, an opportunity for covert channels

39

