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Ideal model: Random Oracle:

a blackbox D interacting with the external world:

• D maintains a hash table T

• D defines a function F and serves as an oracle for values of F

• query F (a)= ? sent to D for a k-bit string a. It answers as follows:

1. search for an entry (a, ∗) in T

2. if an entry (a, z) has been found, then return(z)

3. else:

i. choose z at random

ii. insert (a, z) in T

iii. return(z)
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Properties of ROM: One-Way Function

input: z chosen at random

output: any x such that F (x)= z

F is one-way function if

there is no efficient algorithm to solve this problem with a non-negligible probability

Remarks:

i. if we have seen a such that the oracle D has returned z, then the algorithm can
return a

ii. the number of arguments where the oracle D has answered is limited (say 240), while
k≫ 40 , then probability of this situation is negligible

(for k= 160: pbb=1/2120)
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ROM

at the moment of creation of the query F−1(z) = ? with high probability no entry f the
form (∗, z) in T

an algorithm can not forsee the future events (coin tossing and choosing z as the image
of F )
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Application - cryptographic commitment

procedures:

commitment creation:

• input: x

• output: C(x)

commitment opening:

• input: c

• output: x such that C(x)= c

key property I:

for any nontrivial property A and a commitment c it is infeasible to say whether A(x) for x
used to create the commitment (c=C(x))

In other words: we know nothing about x if we learn only c
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Target application of cryptographic commitment

interactive protocol between Alice and Bob

mimicking “simulataneous choice”:

i. Alice chooses x, commits x to c, and shows c to Bob

ii. Bob chooses y

iii. Alice opens c to x

One more property needed to avoid cheating by Alice:

Alice may attempt to open c to a different value x
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2nd pre-image resistance:

given x and c=F (x) it is infeasible to find any x′ such that c=F (x′)

For ROM:

• it is extremely unlikely that for an entry (x, c)∈T there is already an entry (x′, c)∈T
for x′

� x ...

• ... so for producing such x′ it is necessary to ask queries and hope to get c

• ... but this is extremely unlikely
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weaker version: conflict-freeness :

given F

find and x, x′ such that F (x)=F (x′)
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Existence issues

if F : {0, 1}2k� {0, 1}k then the the expected number of x′ such that F (x)=F (x′) is

huge (2k)! (Pigeon Hole Principle)

− deep difference between:

“x′ does exist” and ”x′ can be computed”
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Example for 2nd preimage resistance without ROM:

Setup: random generators g and h of a cyclic group G of a prime order q such that it is
infeasible to find r such that gr =h

Function: F : {1,
 , q − 1}2→G where

F (x0, x1)= gx0 ·hx1

What if not 2nd preimage resistant:

i. algorithm A finds x0
′ and x1

′ such that F (x0, x1)=F (x0
′ , x1

′)

then also gx0 ·hx1 = gx0
′

·hx1
′

ii.A returns r8 (x0
′ −x0)/(x1−x1

′) mod q

indeed

h= g(x0
′
−x0)/(x1−x1

′)
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Application: coin tossing over internet

i. Alice chooses secret K and bit a

ii. Alice calculates: c8 F (K,a) and sends c to Bob

iii. Bob chooses bit b and sends it to Alice

iv. Alice computes r8 a⊗ b and responds with K,a

v. Bob checks the opening: c=F (K,a)? and computes r8 a⊗ b
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Dependencies:

conflict free ⇒ 2nd preimage resistant

Equivalent to: ¬ 2nd preimage resistant ⇒ ¬ conflict free

this is obvious: if we can create a conflict for a c=F (x)then we can create a conflict!
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2nd preimage resistant ⇒ one-way

Equivalently: ¬ one-way ⇒ ¬ 2nd preimage resistant

proof:

i. choose x at random

ii. c8 F (x)

iii. apply inversion function: x′

8 F−1(c)

iv. output (x, x′)

v. with high probability x� x′ as there is a huge number of z such that F (z)= c
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Correlated-input secure

input: given c=F (K,x) for a known K and unknown random x, a “simple function” H

output: c′ such that c′=F (K,H(x))

example: H(x)= x+1

F is correlated-input secure if

if there is no computable function A solving this problem

ROM: it holds obviously
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Yet-another-output secure

input: given c1=F (K,H1(x))
 , ck=F (K,Hk(x)) for a known K, unknown random x, and
known “simple circuits” H1,
 ., Hk

output: c′ such that c′=F (K,Hk+1(x))

F secure if for any computable function A solving this problem:

either

− Hk+1(x)=Hi(x) for some i≤n

− or A can extract x
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Application: pseudorandom number generation

Procedure:

i. choose K at random

ii. output: F (K, 0)‖F (K, 1)‖F (K, 2)‖


Property: unpredictability

Given a prefix of the output of such PRNG it is impossible to predict what will come next

(unless F is not one-way)
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authenticating transmission over a second channel:

i. server A sends to server B a data D over an unprotected channel

ii. server A computes h8 F (D,K) where K is random and shared by A and B

iii. the operator of A calls the operator of B and dictates h

iv. server B checks whether h corresponds to the message received by recomputing it

An attack (for h transmitted in advance):

i. eavesdrop h

ii. as man-in-the-middle intercept D and manipulate getting D ′ such that F (D ′,K)=h as
well

iii. transmit D ′ to server B

(the attack does not work iff F has the property discussed)
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Negative Example

F (x0, x1)= gx0 ·hx1

− let z=F (x0, x1) for unknown x0 and x1

− one can easily compute F (C(x0, i), C(x1, j)) where C(x, i)= x+ imod q

F (C(x0, i), C(x1, j))= z · gi ·hj

Lesson learnt: this F is provably secure concerning 2nd preimage resistance but ...

nevertheless insecure regarding another important property
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Yet another property (for Blockchain)

input: M and a parameter a small integer k

task: find y such that k least significant bits of F (M, y) are 0
 .0

Assumption:

there is no better way to find y than brute force:

− take candidates for y, for each compute F (M, y) and check the result

Mining in Bitcoin

the party that first finds y can extend the blockchain with transactions M (and get reward)
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Hash functions for a fixed input length

say H: {0, 1}512� {0, 1}160

should behave as in ROM:

that is: all properties mentioned so far should be satisfied

the image must be long enough to withstand the birthday attack for H : ∗� {0, 1}2k:

i. choose at random x1,
 , xm for m=2k

ii. compute H(x1),
 , H(xm)

iii. look for any repetition among the values computed

iv. if found: H(xi)=H(xj) then return the collision values xi and xj
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Observation: pbb of failure:
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Corollary:

no hash function H: {0, 1}
 .

� {0, 1}80 can be used

computing 240 values is feasible,

while computing and storing 280 values is impossible (230 petabytes))

renting 1 petabyte storage: 367980 USD, so together about 370 000 000 000 000 USD

brutto social product USA 2020 about: 21 000 000 000 000
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Hashing long arbitrarily long messages

assume that we can find a good F : {0, 1}512� {0, 1}160

what to do if we wish to get a function F ∗: {0, 1}∗� {0, 1}160 with similar properties
(behaving like Random Oracle)?

Merkle-Damgard meta-construction based on function Γ:

1. input message M

2. add padding to get a full number of blocks: M ‖padding=m1‖m2‖
 ‖mN

3. take initial vector: H0

4. for i=1 toN :

Hi8 Γ(Hi−1,mi)

5. return HN
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Merkle-Damgard instantiations:

→ Davies-Meyer: Hi8 Encmi
(Hi−1)⊗Hi−1 where Enc is an encryption function

→ Matyas–Meyer–Oseas: Hi8 EncHi−1
(mi)⊗mi

→ Miyaguchi-Preneel: Hi8 EncHi−1
(mi]⊗mi⊗Hi−1

→ dedicated constructions based on fixed length input compress-hashing:

MD5 (obsolete - do not use except for nonsecurity applications!),

SHA-1,

SHA-2 (a few options, in use),

Keccak (current NIST standard SHA-3)
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MD5 story

one of flagship algorithms, used even until 2012, replaced by SHA-1 (similar architecture),
later by Keccak (different architecture)

DESIGN:

• pad to the length 448 mod 512 with 10..., add: the message length: a 64 bit number

• split into 512 bit blocks

• IHVi is the intermediate hash value after block i,

consisting of 32-bit numbers ai, bi, ci, di.

• the initial value IHV0=(a0, b0, c0, d0) is fixed

• IHVi=MD5Compress(IHVi−1,Mi )

• hash output= the last value IHVN (after some reformatting)
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MD5Compress function

− steps i=0,
 , 63

− each step involves modular addition, left rotation, non-linear function fi, adding a constant ti, rotation

by constant si

− function fi(x, y, z) defined as:

− F (x, y, z)= (x∧ y)∨ (x̄ ∧ z) for i=0,
 , 15,

− G(x, y, z)= (z ∧x)∨ (z̄ ∧ y) for i= 16,
 , 31,

− H(x, y, z)=x⊕ y⊕ z for i= 32,
 , 47,

− I(x, y, z)= y⊕ (x∨ z̄) for i= 48,
 , 63

26



512-bit message block split into 32-bit words m0,
m15

− the same mi used 4 times in different phases – this this compicates adjusting message blocks

to create a collision

− let wt denote the input word at step t. it equals

mt for 0≤ t≤ 15

m(1+5t)mod16 for 16≤ t≤ 31

m(15+3t)mod16 for 32≤ t≤ 47

m(7t)mod16 for 48≤ t≤ 63

that, is, we get the following index values for m:

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,

1,6,11,0,5,10,15,4,9,13,2,7,12,1,6,11,

5,8,11,14,1,4,7,10,13,0,3,6,9,12,15,2,

0,7,14,5,12,3,10,1,8,15,6,13,4,11,2,9
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4 consecutive steps

a8 b+((a+ fi(b, c, d)+wi+ ti)≪ si)

d8 a+((d+ fi(a, b, c)+wi+1+ ti+1)≪ si+1)

c8 b+((c+ fi(d, a, b)+wi+2+ ti+2)≪ si+2)

b8 c+((b+ fi(c, d, a)+wi+3+ ti+3)≪ si+3)
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By Surachit - self-made SVG, based on [1] by User:Matt Crypto, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=2652649
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Differential analysis

• consider X and X ′=X +∆ (X not fixed (random) but ∆ to be fixed

• differences inmi andmi
′ influence the computation: typically one differences creates many

differences and there is an avelanche...

• differential analysis: in some cases the differences do not grow and even sometimes cancel
out

• write conditions that guarantee such cancelling (conditions on bits of ai, bi, ci, di for
i=
 .)

• hoping that: for a random X each condition satisfied with pbb ≈ 2−k where k information
bits fixed by the condition)

(violating this property would lead to easier attacks!)

• characteristic: list of differences for each step plus approx. probabilities of validity
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Differences used

• as numbers: for example a− a′mod 232

• bitwise xor: a⊕ a′

Relations: if a− a′=26mod 232 then there are a few possibilities for a⊕ a′:

i. a′[7] = 1 and a[7] = 0

ii. a′[8] = 1, a′[7] = 0 and a[8] = 0, a[7] = 1 (one carry)

iii. ... (two carry bits)
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Attack scenario (... but there are many options by follow up work)

only two blocks of 512 bits: M0,M1 and M0
′,M1

′

initial difference: ∆H0

after processing 512 bits: ∆H1

finally: ∆H =0

M0
′−M0=(0, 0, 0, 0, 231, 0, 0, 0, 0, 0, 215, 0, 0, 231, 0)

M1
′−M1=(0, 0, 0, 0, 231, 0, 0, 0, 0, 0,−215, 0, 0, 231, 0)

the goal:

∆H1=(231, 231+225, 231+225, 231+225)
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Notation

ai
′= ai[7, 9,−22]

means that ai
′ is the same as ai except for

ai[7] = 0, ai
′[7] = 1

ai[9] = 0, ai
′[9] = 1

ai[22] = 1, ai
′[22] = 0
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Characteristic
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Conditions
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Attacks complexity and consequences

• functions like MD5 broken (2nd preimage broken in practice)

• SHA-1 conflict freeness broken, but 2nd preimage still not

• SHA-1: chosen prefix attack: one can take D� D ′ and find Z,Z ′ such that

SHA-1(D ||Z)=SHA-1(D ′||Z ′) (the cost is still very high)

• until 2004 the people belived that SHA-1 is secure, authorities issued recommendations

• ... but prof. Xiaoyun Wang and her team did not believe/knew about it and broke MD-
4 and consequently MD-5 and SHA-1

36



ROGUE Certificates and MD5

• target: create a certificate (webserver, client) that has not been issued by CA

• not forging a signature contained in the certificate but:

i. find two messages that Hash(M0) = Hash(M1) and M0 as well as M1 have some
common prefix that you expect in a certificate (e.g. the CA name)

ii. submit a request corresponding to M0, get a certificate with the signature over
Hash(M0)

iii. copy the signature from the certificate concerning M0 to a certificate based on M1

• problems: some data in M0 are to be guessed: sequential number, validity period,

some other are known in advance: distinguished name, ...

37



legitimate website rogue CA
certificate certificate
serial number serial number
issuing CA issuing CA
validity period validity period
domain name chosen prefixes rogue CA name

1024 bit RSA public key
extensions
“CA=true”

................................. tumor
2048 RSA public key collision bits

.................................

extension “CA=false” identical suffix

Table.

• finding M0 and M1 must be fast (otherwise guessing the serial number will fail)
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• attack on MD5, general picture:

message A

prefix P

padding Sr

birthday blocks Sb

near-collision block Sc,1

near-collision block Sc,2




near-collision block Sc,r

suffix
←collision→

message B

prefix P ′

padding Sr
′

birthday blocks Sb
′

near-collision block Sc,1
′

near-collision block Sc,2
′




near-collision block Sc,r
′

suffix

Table.
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prefix, birthday bits, near collision blocks:

• birthday bits: 96, end at the block boundary, they are RSA bits – in the genuine cer-
tificate, “tumor” (ignored part by almost all software- marked as a comment extension)
– in the rogue certificate

birthday bits make the difference of intermediate hash values computed for both
certificates fall into a good class

birthday paradox makes it possible: we may try many possibilities for tumor

• then apply 3 near-collision blocks of 512-bits. website: we have “consumed” 208 + 96
+ 3·512 = 1840 bits of the RSA modulus. Rogue certificate: all bits concerned are
in the “tumor”
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• after collision bits: 2048-1840 = 208 bits needed to complete the RSA public key –
how to generate an RSA number with the prefix of 1840 bits already fixed?

– continue to get a product of two primes:

→ B denotes the fixed 1840-bit part of the RSA modulus followed by 208 ones

→ select at random 224-bit integer q until B mod q<2208, continue until both q

and p= ⌊B/q⌋ are prime. Then

− p · q is an RSA number

− p · q <B, B− p · q=B− q · ⌊B/q⌋<2208. Hence p · q has the same 1840 most
significant bits as B

→ not a good RSA number but CA has no possibility to check it

→ ... the attacker can create RSA signature for the certificate request
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• attack complexity (number of hash block evaluations) for a chosen prefix MD5: 249 at
2007, 239 in 2009, not much motivation for more work - remove MD5 certificates! (For
a collision: 216)

• ethical disclosure:

→ attack found

→ real collision computed as a proof-of-concept

→ CA informed and given time to update

→ publication

→ code available
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FLAME

• malware discovered 2012, 20MB, sophisticated code, mainly in Middle East,

• draft of the attack:

− client attempts to resolve a computer name on the network, in particular makes WPAD
(Web Proxy Auto-Discovery Protocol) requests

− Flame claims to be WPAD server, provides wpad.dat configuration file

− victim that gets wpad.dat sets its proxy server to a Flame computer (later no sniffing
necessary!)

− Windows updates provided by FLAME computer. The updates must be properly
signed to be installed!

− signatures obtained for terminal Services (not for Windows updates!), certificates
issued by Microsoft.

− till 2012 still signatures with MD5 hash

− MD5 collision necessary to cheat
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HMAC

keyed message authentication code:

i. Alice and Bob share a secret K

ii. Alice sends a message M to Bob

iii. Alice computes H8 HMAC(K;M) and sends H to Bob

iv. Bob computes H ′

8 HMAC(K;M) and accepts M iff H ′=H

Requirement:

given M and H it is infeasible to create M ′ and H ′ such that H ′=HMAC(K,M ′)

(without K of course)
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Standard RFC 2104

RFC=“Request For Comments” but in fact RFC are semi-formal standards

no RFC for X⇒ nobody will ever consider to use X

generic construction for HMAC with a hash function:

HMAC(K,M)=Hash(K ⊕ opad‖Hash(K ⊕ ipad‖M))

where opad� ipad are constants
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SHA-3

reasons:

− the attacks against MD5 applicable to the whole family - also SHA-1, SHA-2

− for SHA-2 no real threat so far but ... maybe a good idea to have a hash based on a
different concept

− more flexibility: SHA-2 provides a fixed length output, some applications (stream ciphers)
would prefer other output length

− increase the speed of hardware implementation

SHA-2 family and SHA-3 coexist as standards of NIST
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KECCAK and Sponge construction

• former (Merkle-Damgard): output is the value after absorbing all message blocks

• sponge: first absorbe, but then “squize” the sponge outputting small parts but still
changing the internal state
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(all pictures on Keccak by: Christof Paar, Jan Pelzl)
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Keccak-f function

c and r are parameters, f is a function on 25 · 2l bits, where l is again a parameter

there are tables for combinations of parameters
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Dimensions:

• previously: working on (say) four 32-bit blocks with Round Robin fashion

• Keccak: 3-dimensional structure of size 5x5xw, operations in all 3 dimensions to mix
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Round

operations

→ θ (theta) important for diffusion

→ ρ (rho) dispersion within each slice

→ π (pi) rearranging the positions of lanes

→ χ (chi) simple non-linear opeartion

→ ι (iota) one lane xor-ed with a constant
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θ (theta)

a[i, j][k]← a[i, j][k]� parity(a[0...4][ j � 1][k])� parity(a[0...4][ j+1][k � 1])
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ρ (rho) and π (pi)

b[y, 2x+3y] = rot (a[x, y], r[x, y]), for x, y=0,
 , 4 (operations mod 5)

rotation matrix r depends on the round number
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χ (chi)

a[x, y]=b[x, y]�((b[x+1, y])∧b[x+2, y]) ,

x, y=0, 1, 2, 3, 4
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ι (iota)

Exclusive-or a round constant into a[0, 0]
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HMAC

message authentication code based on Hash function and a secret key

HMAC computation for message M and key K:

h8 HMACK(M)=Hash((K ⊕ opad)‖Hash((K ⊕ ipad)‖M))

upon receiving M and h, the HMAC of M is recomputed and compared with h
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Complexity Issues

• Sha-3 (Keccak) is optimized but still more costly than encryption while counting the
number of gates in hardware implementation

• IoT may require simpler solutions – “lightweight” even at the price of the security prop-
erties

IoT example: broadcast authenticationTesla

Hash chain: Ki=Hash(Ki+1) (K0,
 , KN must be generated in advance)

message i contains: payload Mi, MAC HMAC(F (Ki),Mi) and Ki−d,
for a one-way function F

verification: message i+ d reveals Ki, then check HMAC

conclusion: message i+ d sent by the same person (as for the message i)
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