
ALGORITHMICS, CRYPTOGRAPHY & COMPUTER SECURITY, graduate programs 2023
CRYPTOGRAPHY, 2022, assignments list # 1, 7.3.2023

1. Given a good hashing function H : {0, 1}k −→ {0, 1}k that behaves like a random oracle. Howe-
ver, we need a function F that maps a sequence of 2m bit strings of length k to a string of length k
and also behaves as a random oracle.

The following construction has been proposed: we create a tree with 2m leaves. We label the leaves
with the bit strings from the input. Then we label the internal nodes in the following way: a node
a with children b and c gets the label label(a) := H(label(b)) ⊕H(label(c)), where ⊕ stands for
bitwise XOR operation. The label of the root of the tree is the value of F .

Is it a sound construction? If not, then how to improve it?

2. A hash function must mimic a random oracle. Assume that we are given H1 and H2 designed
independently which are claimed to be pretty good as a hash function.

An intuitive way to create an even better function is to define H(x) = H1(H2(x)). Is it a good
idea? Does H inherit all good properties of H1 and H2? Is it better than H1 or H2 alone?

Check all properties that we have mentioned. Consider also the cardinality of the image of H .

3. Assume that you have a random oracle O that returns k bit numbers. However, what you need are
the m bit numbers with exactly t ones. Present a procedure based on O that mimics a random oracle
that returns only numbers with this property.

4. Consider a random walk performed on an array D of size 2k, where each entry is a bit generated
uniformly at random. If i is the current position, then in one step the pointer jumps to the position
Hash(D[i]..D[i + m]]). What is the probability that all the positions of D will be visited by the
pointer when it starts at the position 0? (An estimation is enough.) What about visiting, say, at least
half of the positions?

5. For authentication based on secret key K, we may have the problem of leaking the key to third
parties. There might be different ways of such leakage, e.g. via delays in communication.

To protect ourselves against such leakage, we use a very large key K – say, 100MB key. Then
leaking it bit by bit would take years. But how to use a large key so that:

• the adversary has a negligible chance to impersonate if he knows the bits of K on a fraction
of 50% positions,

• computing the authentication token (sent from the prover to the verifier) is very easy and fast.

(Hint: we are going to make use of the results of Question 4.)

6. Frequently, we consider the distinguishability concept: The game is that we have a black box that
hides either a random oracle O or a hash function H (each option with probability 0.5). Alice wins
if she correctly guesses what is inside after sending a number of queries to the black box. We say
that H is indistinguishable from O, if Alice wins with probability 1

2 +ϵ, where ϵ is negligibly small
for any efficient strategy A (say, A is a polynomial-time algorithm).

One common approach to evaluate candidates for good hash functions is to create a strategy called
distinguisher, so that Alice using the distinguisher would win the above game with probability
1
2 + ϵ, where ϵ is NOT negligible.

Is the following sentence true:



function H has all the properties discussed in the lecture iff there is no distinguisher for
H

Consider separately the ⇒ and ⇐ implications.

7. There is a good example of useful data structures based on hash functions: DHT structures (see
also Bloom filters). To insert a file F this data structure we compute a1 := Hash1(ID(F )) and
a2 := Hash2(ID(F )), then insert F at the address a1 or a2, whichever place is free. In order to
fetch F with the identifier ID(F ) we simply look at the locations a1 and a2.

Estimate the probability of failure to insert F into the DHT structure if already n files have been
inserted and the addresses have k bits.

A Cuckoo filter is an improvement of the above construction. If both places for F are already
occupied, then we take F ′ already stored in, say, position a1 and move it to its alternative position,
while placing F in a1. Of course, the alternative location for F ′ might already be taken, so we
repeat the same procedure.

Try examples to see how good this improvement is. Try to estimate analytically what the improve-
ment is.

/-/ Mirosław Kutyłowski


