CRYPTOGRAPHY LECTURE, 2023
Master level

Mirostaw Kutytowski

Cryptographic Random Numbers

Ideal model: again a Random Oracle:

a blackbox D outputting bits:

e atstep t it outputs D(t) selected at random by “coin tossing”

e unlike for hash functions: the outputs are bits, so collisions occur

Definitely useful: example a commitment

purpose: converting adaptive randomized protocols to non-adaptive randomized proto-
cols

creating a commitment: Alice commits to a value r but does not present it to Bob
I. Alice chooses a k-bit string w
ii. Alice computes C':= Hash(w,)

iii. Alice presents commitment C' to Bob

opening a commitment: Alice presents and proves that it corresponds to ("

I. Alice shows r and w

ii. Bob checks that C'=Hash(w,r)

Properties of commitment:

i. Bob cannot recover w based on C' (one-way property of hashes, there are many
solutions!)

ii. even if Bob knows w (for some reason), he cannot predict r and check

Conversion to non-adaptive protocols:

i. Alice chooses random numbers 7y, 75, ... (r; is the randomness for the ith step of the
algorithm)

ii. Alice computes and presents commitments C4, C5, ... for 7y, 79, ...

iii. at step ¢ Alice opens C; and executes the algorithm step deterministically for ran-
domness 7;

Advantage:

— a randomized algorithm may assume that the participants are honestly exe-
cuting “choose r at random”

— it is so risky in a multiparty protocol!

— via the conversion: a malicious participant cannot adopt to the situation and choices
of other participants

Consensus protocols

— some number of participants: Ay,..., A,

— each A, holds a value v,

— task: reach an consensus for v which must belong to the set {vy,...,v,}

example: leader election: v; is the identifier of A;

Problem: the participants can cheat for own advantage (Byzentine nodes)

example: virtual traffic lights

Example Solution for Leader Election
execution from the point of view of A;:
I. A; chooses r; at random, i.e. 7;:=rand() (k bit numbers)

ii. A; computes C;:= Commitment(Hash(r;,ID4,))

ii. A; broadcasts (; and receives commitments from other participants

iv. once all commitments received: A; sends opening to C;
v. A; computes S: =SORT(ry,...,7,)
vi. A; computes differences: if S=(s1...,5,), thend;:=s,.1—s; fori<n

and d,,: =s1+ 2% — s,

vii. A; is the leader if s;=r; and d; is the biggest one

Indistinguishability game for a generator D

input: generator D or a true random source R, each with pbb %
operation: a distinguisher can run the generator any number of times

result: the distinguisher says “D” or “R"

the generator D is not good if the distinguisher answers correctly with pbb 0.5 + &, where
e is not negligible

Derived properties

— forward unpredictability: knowing the output to step ¢ is is infeasible what will come
next

— backwards unpredictability: knowing the output starting from step ¢, it is infeasible
to guess the output for steps 1 through ¢t — 1

— no properties like: the average fraction of zeroes in the output is 0.4 ...

Randomness amplification
Random source R with some weaknesses (like bias for 0's)
i)

ii. output(F'(z)) where I is a deterministic function mimicking Random Oracle

example: F' is a good hash function

10

Pseudorandom number generator

model:
e internal state S changing in time
e transition function: Sy, 1:=T(.5;)

e output: b;:=G(S))

good practice: (bitsize of b;) < (bitsize of S})

(learning S; from b; impossible due to information theoretic argument)

(the attack does not work iff F has the property discussed)

11

Imperfect Generator Example

I. choose K at random
ii. generate Hash(K ', 1)|[Hash(K ,2)|[Hash(K, 3)]...

correlated input secure hash function = the output indistinguishable from true random

Problem

e adversary retreiving the internal state of the generator (side-channel attack, ...)

e after getting K the adversary can re-run the generator from the beginning (backwards
predictable)

2

Securing PRNG - FIPS approach
a) transition function is a one-way function

= leaked internal state does not endanger the previous outputs
b) PRNG contains internal entropy source

= refreshing procedure, to defend against seed retention by the PRNG provider

13

FIPS Approved Random Number Generators

NIST approach: standardization of cryptographic functions to be deployed on cryptographic
secure modules according to FIPS 140-2

e nondeterministic generators not approved,

e deterministic: special NIST Recommendation, in fact “deterministic’ means determin-
istic but with some random input

e first an approved entropy source creates a seed , then deterministic part

14

Consuming Application

Personalization String Additional Inpat
-
Manee Entropy It
P — A A S -— _— e —= | _— —_— + e e |
I = I
Tustantisale Heseed
I Funetion Function i
| I
I I
I t I
I l.'m:nsiafll'tal:u Internal State - -I'}-c*nm'lute F
| Funcilion Funcrion i
| i
| T — I
| S -5 @ i : |
| - — Pseudorandom Cutpuat E

MNEBC: Mechanism

5

Instantiation:
— the seed with limited validity period, once expired a new seed has to be used
— reseeding function creates a different seed

— different instantiations of a DRNG can exist at the same time, they MUST be independent
in terms of the seeds and usage

Internal state:

— secret cryptographic chain value, the counter of output requests served so far
— different instantiations of DRBG must have separate internal states
Instantiation strength:

— formally defined as “112, 128, 192, 256 bits”, intuition: number of bits to be guessed

16

Functions executed:

— instantiate: initializing the internal state, preparing DRNG to use

— generate: generating output bits as DRNG

— reseed: combines the internal state with new entropy to change the seed
— uninstantiate: erase the internal state, return to factory settings

— test: internal tests aimed to detect defects of the chip components
DRBG mechanism boundary:

— DRBG internal state and operation shall only be affected according to the DRBG
mechanism specification

— the state exists solely within the DRBG mechanism boundary, it is not accessible from
outside

— information about the internal state is possible only via specified output

iz

Instantiate

Reseed

Instantiation

Reqguest Birs

Test
DIRBC

Lninstantiate
DRBG

Instantiate =
Function

1
1
1
]
1
]
L
1

Entropy

—+— Input

Entropy

Reseed
Function

Generate
Function

mbates

Test
Function

Uninstantiate
Funciion

Cryvptographic Module Boundary

18

S Input
-[S-E:-ur-r_"
Chanmel)

Seed:

— entropy is obligatory, entropy strength should be not smaller than the entropy of the
output

— approved randomness source is obligatory as an entropy source
— reseeding: a nonce is not used, the internal state is used
— nonce: it is not a secret. Example nonces:
— a random value from an approved generator
— a trusted timestamp of sufficient resolution (never use the same timestamp)

— monotonically increasing sequence number

19

reseed operation:
— “for security”

— argument: it might be better than uninstantiate and instantiate due to aging of
the entropy source

— the main difference: the internal state is used! instantiate does not use the state

20

Hash_DRBG

variants:

— hash algorithms: SHA-1 up to SHA-512 (plug-and-play approach)

parameters determined, e.g. maximum length of personalization string
— seed length typically 440 (but also 888)

state:

— value V' updated during each call to the DRBG

— constant C' that depends on the seed

counter reseed_counter: storing the number of requests for pseudorandom bits since

%
new entropy input was obtained during instantiation or reseeding

2L

instantiation:

1. seed_material = entropy_input || nonce || personalization_string
2. seed = Hash_df (seed_material, seedlen) (hash derivation function)
3.V = seed

4. C = Hash_df ((0x00 || V), seedlen)

5. Return (V, C, reseed_counter)

reseed:

1. seed_material = 0x01 || V || entropy_input || additional_input
2. seed = Hash_df (seed_material, seedlen)

3. V = seed

4.C = Hash_df ((0x00 || V), seedlen)

5. reseed_counter = 1

6. Return (V, C, reseed_counter)

20

generating bits:
1. If reseed_counter > reseed_interval, then return “reseed required”
2. If (additional_input # Null), then do
2.1 w = Hash (0x02 || V || additional_input)
SR B ST B b e Te P i
3. (returned_bits) = Hashgen (requested_number_of_bits, V)
4.H = Hash (0x03 || V)
5.V = (V + H + C + reseed_counter) mod 2s¢cdlen
6. reseed_counter = reseed_counter + 1

7. Return (SUCCESS, returned_bits, V, C, reseed_counter)

23

Hashgen:

(e requested — no — of — bits

outlen

2.data =V
3.W = Null string
4. Fori = 1tom
4.1 w = Hash (data).
42W =W || w
4.3 data = (data + 1) mod 2seedlen
5. returned_bits = leftmost (W, requested_no_of_bits)

6. Return (returned_bits)

24

Other NIST standard constructions:

I. based on HMAC function

ii. based on block encryption

25

DUAL EC -standardized backdoor

NIST, ANSI, ISO standard for PRNG, from 2006 till 2014 when finally withdrawn

problems reported during standardization process: bias finally 2007 a paper of Dan Shumow

and Niels Ferguson with an obvious attack based on kleptography (199*)

DUAL EC dead for crypto community since 2007 but not in industry

deal NSA -RSA company (RSA was paid to include DUAL EC)

products with FIPS certification had to implement Dual EC, no certificate when P and (@)
generated by the device

generation of own P and () discouraged by NIST (true: one can make mistakes!)
Dual EC used in many libraries: BSAFE, OpenSSL, ...
in 2007 an update of Dual EC made the backdoor even more efficient

changes in the TCP/IP to ease the attack (increasing the number of consecutive random
bits sent in plaintext)

26

Elliptic curve algebraic group

some details later, but:

more secure than modular arithmetic = parameters can be smaller for the same computational
complexity of breaking

— = time and space complexity practically lower (even if mathematics more complex)

— group elements: points on the plane I x ' that satisfy some equality of 3rd degree , where [
is a finite field

— and an abstract point O (called “point in infinity”)
two rules:

e —(z,y)=(z,~y)

e if a line intersects the curve on points (x,y), (u,w), (s, z), then
(@, y) + (v, w) +(s,2) =0

e additive notation: k- (z,y) means (z,y)+ ...+ (z,y) (k times)

27

recall the basic principle:
— state s;11= f(s;), where s is the seed
— generating bits: 7;: =¢(s;)
— both f anf ¢ must be one-way functions in a cryptographic sense
Dual EC, basic version:
— points P and () “generated securely” by NSA but information classified,
— S;11: =x(s;- P) (that is, the “x" coordinate of the point on an elliptic curve)
— i =x(s;- Q)
— this option used in many libraries

Dual EC with additional input:

— if additional input given then update is slightly different:

— t;:=s;® H(addtional input;), s;11:=x(t;- P)

28

Attack: with a backdoor d, where P=d- ()
for basic version:

— from r; reconstruct the EC point R; (immediate by Elliptic Curve arithmetic , two
solutions)

— compute s;.1 as z(d- R;) (no need to know the internal state s;)

29

Dual EC with additional input, attack:

— it does not work in this way since the & operation is algebraically incompatible with
scalar multiplication of elliptic curve point

— it does not help much:

— if more than one block r; is needed by the consuming application, then the next
step(s) is executed without additional input ...

— ... and at this moment the adversary learns the internal state

30

Simple hardware generators : LFSR ...

linear feedback shift register
e state: bo,bl,bg,...,bn
e generate: output b,

e transition:

i.d:=%" 0;-b; mod2 (where afew a's are 1, the rest is 0)
Il. I’ightShlﬂ:. (bo, bl, bg, 785, bn) = (d, bo, bl, T bn—l)

11 1314 16
||||||||||||||||

aq

(Wikipedia)

31

Advantages: extremely fast and cheap if implemented in hardware,

if a's well chosen (correspond to some irreducible polynomial), then the period is maximal
W=

Disadvantage:

linear algebra, weak in cryptographic sense, state can be easily recovered

Attempts to fix the problem:
— instead of Y~ mod 2 some nonlinear function

— output: F'(output(LFSR;), output(LFSRy), output(LFSR3))

32

Krawczyk’s shrinking generator:
e two sequences generated a = (ag ay, ag,...) and b= (by by, bs,...) obtained from LFSR
e the output consists of b except for bits dropped:

b; dropped iff a;=0

33

Stream ciphers

random number generators come together with construction of stream ciphers:

ciphertext := plaintext @ random(Key)

example: ChaCha

34

True Random Generators

e problem of bias, dependancies etc — apply Hash to it:
output = Hash(TRNG())

e problem of influencing the generator via environment conditions (laser, temperature,
radiation, ...

e how do you know in what physical shape is the generator?
PRNG can be tested cryptographically,

for TRNG it is hardly possible, except when it is evidently broken

e maybe a fake? no expensive TRNG inside but a cheap LFSR? You cannot check it...

35

