
CRYPTOGRAPHY LECTURE, 2023

Master level

Mirosław Kutyłowski

Signatures - Proofs of possesion of private key

Concept:

• Alice holds a secret key sk

• nobody else has sk

• there is pk corresponding to sk

• with pk one can check that some data have been generated with sk

⇒ Proof of Posession of secret key corresponding to pk

1

Proofs of Possession

• interactive: for authentication

challenge-response algorithms

• non-interactive: for digital signatures

• option 1: signature is the result F (M, sk) for some function F

• option 2: challenge response algorithm simulated - randomness comes from Hash(M)

Security options:

• standard model

• Random Oracle Model - signature may be insecure if Hash turns out to be weak

2

Signature

signature of M as a proof of posession:

• the signer has used sk

• the proof corresponds to M

Procedures:

• key generation

• signature creation

• signature verification

(signature validation is a broader concept including verification)

3

Properties

soundness: if s8 Signsk(M), then Verify(s,M , pk)= valid

if s′� Signsk(M), then Verify(s′,M ,pk)= invalid except for a negligible probability

unforgeability:

• black-box creating signatures on demand of the adversary for messages of his choice

• adversary wins if presents a valid signature that was not the output of the blackbox

some leakage of secret key possible – as far as unforgeability still holds

4

Schemes with appendix:

components: one-way function F , message encoding µ

signing: s8 F (µ(M), sk)

verification: Verify(s, µ(M), pk)= ?

Crucial issue: embedding µ

5

Signature with message recovery

components: one-way function F , message encoding µ

signing: s8 F (µ(M), A, sk)

verification: (status,M)8 Recovery(s,A, pk) where status∈{valid, invalid}

6

RSA signatures – basic form

i. h8 µ(M)

ii. s8 hd modn for the secret d

iii. output s

textbook version: µ=Hash

7

Multiplicative properties:

µ(M)=
∏

µ(Mi)
αi

implies that

s(M)= s(Mi)
αi modn

Attack: if µ maps to integers with small factors, then finding such α’s is doable

(e.g. if images of µ are relatively small)

⇒ existential forgery possible no matter how “random” is µ

such RSA might be insecure!

8

Examples:

ANSI X9.31: µ(M)= 6‖bb
 .ab‖ Hash(M) ‖HashID

PKCS#1v1.5: µ(M)=00‖01‖PS‖00‖HashID‖Hash(M) where PS is a string of FF octets

wrong padding: µ(M)= a ·M + b (for short messages, if we append M with fixed bytes)

9

RSA with message recovery

ISO9796-1 RSA (M of at most half length of length of n) - completely broken

ISO9796-2 RSA:

signing:

i.M =mL‖mR

ii. P 8 6A‖mL‖Hash(M)‖BC

iii. s8 P d modn

iv. output s,mR

verification:

i. P 8 semodn

ii. check format of P , derive mL

iii. recompute Hash(M) and compare with P

10

Boneh-Boyen signature scheme -secure in the standard model

setup: bilinear map e:G1×G2→GT , generators g1, g2 of G1, G2 , cyclic with order p

key generation: choose x, y at random, ζ = e(g1, g2),

pk=(g1, g2, g2
x, g2

y, ζ), sk=(x, y)

signing message m:

i. choose r at random such that x+m+ y · r�0mod p ,

ii. σ8 g1
1/(x+m+y·r)

iii. output (σ, r)

verification:

signature valid iff e(σ, g2
x · g2

m · (g2
y)r)= ζ

let us check:

e(σ, g2
x · g2

m · (g2
y)r)= e

(

g1
1/(x+m+y·r)

, g2
x+m+y·r

)

= e(g1, g2)
x+m+y·r/(x+m+y·r)=e(g1, g2)= ζ

11

security assumption q− SDH

for bilinear groups:

given (g1, g1
x,
 , g1

xq

, g2, g2
x) compute a pair

(

c, g1
1/(x+c)

)

for any c

let us show that forgery of the signature implies breaking q− SDH:

− for a simpler signature where σ= g1
1/(m+x)

− proof for model where:

messages to be signed are created before public key is given

− 2nd part of the proof (omitted):

Boneh-Boyen signatures can be forged ⇒

simplified signatures can be forged in the above model

(this is the reason why we need y in the scheme)

12

reduction: forgery ⇒ breaking q− SDH

given instance of q− SDH: (g1, d1,
 , dq, g2, h)

• choose m1,
 ,mq

• define f(X)=
∏

i=1

q
(X −mi), expand to f(X)=

∑

αi ·X
i

• take random θ

• set g1
′: =

∏

di
αi·θ (so g1

′ = g1
f(x)·θ) , g1

′ uniformly distributed, independent of g2

• set ζ ′: =e(g1
′, g2)

• set pk=(g1
′, g2, h, ζ

′)

• simulate signatures for mi:

a) define fi(X)= f(X)/(X −mi)=
∏

j� i
(X −mj)

b) expand fi(X)=
∑

βj ·X
j

c) σi8

∏

dj
βi·θ so σi= g1

′1/(mi+x) – signature!

13

Now use the algorithm to create a forged signature σ∗ for m∗

• note that: σ∗= g1
′1/(m∗+x) =g1

θ·f(m∗)/(m∗+x)

• express f in the following way: f(X)= (m∗+X) · γ(X)+ γ∗

• f(X)/(m∗+X)= γ(X)+γ∗/(m∗+X)

• σ
∗

1/θ= g1
γ(X) · g1

γ∗/(m∗+x)

• expand γ(X) and compute g1
γ(X)

• finally solve for g1
1/(m∗+x)

q-SDH solved!

14

From restricted model to security of full signature

• assume that there is a forger A for the full scheme, we are going to create a forger B for
a restricted model/signature

• B creates w1,
 , wk at random and in response gets

− a public key (g1, g2, u, z)

− signatures σ1,
 , σk

• B sends to A the public key (g1, g2, u, g2
y, z)

• A starts to work. It requests a signature for wi:

− B responds with σi and ri where mi+ ri · y=wi (so σi= g1
1/(wi+x)= g1

1/(mi+x+ri·y))

• finally A forges a signature σ∗ = g1
1/

(

m∗+x+r∗·y
)

which is a signature for the reduced
scheme for message m∗+ r∗ · y

existential forgery suceeded!

15

recall Schnorr signature

network protocols, Bitcoin, ...

Setup:

g- generator of a subgroup of prime order q, computations mod p where p prime

− private key: x< q chosen at random

− public key: X = gx mod p

Signature creation:

i. k < q chosen at random,

ii. r8 gk mod p

iii. e8 Hash(M, r)

iv. s8 k− e ·xmod q

v. output (s, e)

Verification:

signature valid iff e=Hash(M, gs ·Xe)

16

No security proof in the standard model

consequence: weakness of Hash ⇒ disaster

example: assume that for e=Hash(M,r) one can find M ′, δ such that e · δ=Hash(M ′, rδ)

then s · δ= k · δ−(e · δ) ·xmod q

s · δ=(k · δ)−Hash(M ′, gk·δ)

and one can present a signature for M ′ based on signature for M without using x:

i. recompute r= gk from (s, e)

ii. find M ′, δ

iii. output s′= s · δ mod q, e′=Hash(M ′, rδ)

17

Schnorr Signatures in Random Oracle Model

assume that algorithm A can forge signatures for ROM for Hash

scenario:

• device running A

• oracle for Hash running according to ROM

derivation of secret key:

i. run the algorithm forging a signature, (s, e) obtained for M

− at some moment A asked oracle for Hash(M, r) where r = gs ·Xe , otherwise the
hash value would be not fixed and during verification set to something probably �e

− so at this moment r is already fixed!

18

ii. rewind the forging algorithm to the moment of asking the oracle: restore the same state
of all registers, continue

− the answer for Hash(M, r) changed to e′

− the signature afterwards is computed in deterministic way: s′= log (r)− e′ ·xmod q

(the previous was: s= log (r)− e ·xmod q

iii. solve:

s− s′=(log (r)− log (r))− (e− e′) ·xmod q

x=(s− s′)/(e′− e)modx

19

One issue left:

− maybe the forger needs some valid signatures to create the next one

− so to forge a signature we need first to forge signatures in order to reduce to Discrete
Logarithm Problem?

Solution: simulation of signatures in ROM

i. choose s, e at random

ii. compute r8 gs ·Xe

iii. insert e in the hashtable for argument (M, r)

(if already there is an entry for (M, r) then backtrack)

20

Signing Anonymous Transactions

idea:

• transactions records publicly available in a distributed ledger (DLT) ⇒ undeniability, no
backdating, possibility to detect double spending , against Money Laundering

• however, we must not create a public Big Brother

core mechanism for digital currencies:

cash hides money flow, this should be the key property of digital money as well

examples below will be taken from Monero

21

User keys and hidden recipient

user keys (EC notation):

− private keys a, b

− public keys: A= a ·G, B= b ·G

− sometimes (a,B) revealed (tracking key) – if the transactions have to be deanonymized

22

Creating transaction with a hidden recipient: (Alice sends to Bob)

− Alice fetches the public key (A,B)

− Alice chooses r at random, R8 r ·G

− Alice generates one-time public key P : =Hash(r ·A) ·G+B

− Alice uses P as a one-time destination key for the transaction containing metadata R

23

Receiving a transaction by Bob

− Bob tries each transaction posted:

→ compute P ′

8 Hash(a ·R) ·G+B

→ if this is the right transaction, then P =P ′ and Bob knows it is for him

− Bob calculates the one-time private key:

x=Hash(a ·R)+ b

− Bob can spend the money obtained in the transaction by signing with x

Remarks:

1: Receiving a transaction possible with (a,B), while (a,B) does not enable to compute x

2: Still only a partial anonymity: using x and the public key P would indicate who has got
transaction with P from Alice

24

One time ring signatures

idea:

− instead of signing with x and showing P , a ring signature created:

− a set of public keys P1, P2,
 ., Pm from transactions chosen at random (transaction
value must be the same)

− x used for signing

− any two ring signature of this kind created with x will be linked immediately

Goals achieved:

− double spending exposed

− m-anonymity concerning where the e-coin comes from

25

Creating one-time ring signature

for key pair (x, P)

1. compute image key

I8 x ·Hash(P)

2. choose a ring of keys P (P0,
 ., Pn) where Ps=P for some s

3. choose q0,
 ., qn at random

4. choose w0,
 ., wn at random, except for ws

5. calculate for i� s

Li8 qi ·G+wi ·Pi

6. calculate Ls8 qs ·G

26

7. calculate for i� s

Ri8 qi ·Hash(Pi)+wi · I

8. calculate Rs8 qs ·Hash(Ps)

9. calculate the non-interactive challenge:

c8 Hash(message, L0,
 ., Ln, R0,
 ., Rn)

10. calculate individual components:

− for i� s: ci=wi, and ri= qi

− cs8 c−
∑

i� s
ci

− rs8 qs− cs ·x

11. output signature (I , c0,
 ., cn, r0,
 ., rn)

27

Verification

Li recomputed as Li
′

8 ri ·G+ ci ·Pi

Ri recomputed as Ri
′

8 ri ·Hash(Pi)+ ci · I

test:

∑

ci=Hash(message, L0
′ ,
 ., Ln

′ , R1
′ ,
 ., Rn

′)

28

Linking:

via the same I

Concept used:

to close the ring somewhere a schnorr signature must be created that applies to two generators
simultaneously:

• Ps (which is hidden)

• I (which is explicit)

Many extensions possible (e.g. a transaction signed with multiple keys)

29

Shortcomings of anonymous transactions with ring signatures

crypto is the strongest component, the problem is elsewhere:

1. the size of the ring is relatively small (e.g. 5, 10)

2. if Bob floods the system with own transactions (e.g. 50% of volume), then the effective
size of each ring is substantially reduced from the point of view of B

3. how to choose the keys for the ring?

→ only the recent ones? then making atranaction with an old key reveals this key

→ all keys with the same probability? Then fast transactions exposed

→ ... many issues for traffic analysis

4. Conclusion: do not trust anonymous transactions blindly

30

Deterministic versions - protection against weak PRNG implementations

predictable k in case of Schnorr: s= k− e ·xmod q enables to solve for x

Idea: remove randomness from signatures

example 1: EdDSA

like EC Schnorr signature on Eduards curve where

k8 Hash(x1,M)

where x1 is a part of the secret key and M is the message to be signed

other part for computing s= k−x0 · emod e

31

BLS signature (Boneh–Lynn–Shacham)

for bilinear groups: pairing e:G×G→GT , secret key sk, public key pk= gx

signature creation:

signature(M)8 Hash(M)x

verification: of s for M

e(s, g)= e(Hash(M), pk)?

32

Deterministic EC DSA (popular for cryptocurrency wallets)

Setup:

− elliptic curve E, point G∈E of prime order q (at least 160 bits)

− private key - random number x< q

− public key U = x ·G

33

EC DSA signature creation

i. h8 Hash(M)mod q

ii. k generated at random, calculate k ·G,

iii. r: =x coordinate(k ·G)mod q

iv. s8 (h+x · r)/k mod q

v. output (r, s)

deterministic version: the same but k is an output of HMAC (see below)

34

HMAC computation

i. h18 Hash(M)

ii. V 8 0x010x01
 0x01 , K8 0x000x00
 0x00

iii. K8 HMACK(V , 0x00, x, h1), V 8 HMACK(V)

iv. K8 HMACK(V , 0x01, x, h1)„ V 8 HMACK(V)

v. initialize empty string T

− run a loop until enough bits generated (the same length as q):

− V 8 HMACK(V), T 8 T ‖V

vi. if T < q then k8 T , else restart with K8 HMACK(V , 0x00), V 8 HMACK(V)

35

CRYSTALS Dilithium

“post-quantum” algorithm, finalist of NIST competition,

based on lattice crypto

Problem (easy) for linear algebra:

A ·y= zmod p, given matrix A and vector z find vectory

Problem - hard:

A ·y+e= zmod p, given matrix A and vector z find vectory and e that are small

all solutions (y,e) form a “lattice”

36

Algebra used:

− prime q=223− 213+1,

− n= 256, ring R=Zq[X]/(Xn+1)

37

Key generation

− vectors s1 and s2 are vectors from R with coefficients <η (small)

38

Signature generation

− security parameters γ1, γ2 , β=maximum possible coefficient of c · si (<η · τ)

− y - consists of small elements

− w1 every number in the result truncated to high bits

− c contains τ elements ±1, otherwise zeroes

− condition in 11: if any coefficient exceeds the threshold then backtrack , parameters
chosen so that a fair probability to suceed

39

Signature verification

Why w1
′ =w1?

HighBits(A ·z− c · t)=HighBits(A ·y) ?

A ·z− c · t=A · (y+ c · s1)− c · t=A ·y+A · c · s1− c · t=A ·y− c · s2

c · s2 has all coefficients <β, while LowBits (A ·y− c · s2) are <γ2− β

40

Practical Challenge - size of the (public) keys and signatures

Further optimization to reduce the public key:

• A generated from a small seed on-the-fly

• not the whole t, only A · s1+ s2= b · t1+ t0

• signer has to provide a help vector of carry bits to mimic computation of HighBits

41

Security Issues

Quantum Random Oracle? – computations taking into account many hash computations
at once

LWE Problem - Learning with Errors it is infeasible to distinguish between

− (A,u) where u chosen uniformly at random

− (A, t) where t=A · s1+ s2 for small s1, s2

SelfTargetMSIS

− given M ,A, t

− find c and a small norm vector y such that c=Hash(M, [A|I|] ·y+ c · t)

related problem MSIS:

find y with small coefficients such that [A|I|] ·y=0

ongoing research about assumptions ...

42

PSEUDONYMOUS SIGNATURES

Application areas:

− while having the pseudonyms, how to authenticate digital data? Digital signatures would
solve the problem

− implementing GDPR rights in practice:

a data subject can authenticate the request (e.g. for data rectification) in a database
with pseudonyms by sending a request with a signature corresponding to the pseudonym

43

BSI Pseudonymous Signature:

•

keys:

− domain parameters DM and a pair of global keys (PKM , SKM)

− public key PKICC for a group of eIDAS tokens, the private key SKICC known to the issuer
of eIDAS tokens

− assigning the private keys for a user:

the issuer chooses SKICC,2 at random, then computes SKICC,1 such that

SKICC= x1+ SKM ·x2

− a sector (domain) holds private key SKsector and public key PKsector.

− a sector has revocation private key SKrevocation and public key PKrevocation

− sector specific identifiers I1
sector and I2

sector for the user:

I1
sector=(PKsector)

x1

I2
sector=(PKsector)

x2

44

• signing: with keys x1, x2 and I1
sector and I2

sector for PKsector and message m

i. choose K1, K2 at random

ii. compute

− Q1= gK1 ·(PKM)K2

− A1=(PKsector)
K1

− A2=(PKsector)
K2

iii. c=Hash(Q1, I1
sector , A1,2

sector , A2,PKsector,m)

(variant parameters omitted here)

iv. compute

− s1=K1− c ·x1

− s2=K2− c ·x2

v. output (c, s1, s2)

45

• verification:

compute

− Q1
′ =(PKICC)

c · gs1 ·(PKM)s2

− A1
′ =(I1

sector)c · (PKsector)
s1

− A2
′ =(I2

sector)c · (PKsector)
s2

− recompute c and check against the c from the signature

• why it works?

(PKICC)
c · gs1 ·(PKM)s2=(PKICC)

c · gK1 ·(PKM)K2 · g−c·x1 ·(PKM)c·x2

=(PKICC)
c · gK1 ·(PKM)K2 · g−c·x1 ·(g)−c·SKM ·x2

=(PKICC)
c · gK1 ·(PKM)K2 · g−c·SKICC = gK1 ·(PKM)K2=Q1

• there is a version without A1, A2 and the pseudonyms I1
sector , I2

sector

46

Problems:

− the issuing authority knows the private keys

but: there is a way to solve it when the user gets two pairs of keys on the device and
takes their linear combination)

− breaking into just 2 devices reveals the system keys

47

