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Signatures - Proofs of possesion of private key

Concept:

• Alice holds a secret key sk

• nobody else has sk

• there is pk corresponding to sk

• with pk one can check that some data have been generated with sk

⇒ Proof of Posession of secret key corresponding to pk
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Proofs of Possession

• interactive: for authentication

challenge-response algorithms

• non-interactive: for digital signatures

• option 1: signature is the result F (M, sk) for some function F

• option 2: challenge response algorithm simulated - randomness comes from Hash(M)

Security options:

• standard model

• Random Oracle Model - signature may be insecure if Hash turns out to be weak
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Signature

signature of M as a proof of posession:

• the signer has used sk

• the proof corresponds to M

Procedures:

• key generation

• signature creation

• signature verification

(signature validation is a broader concept including verification)
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Properties

soundness: if s8 Signsk(M), then Verify(s,M , pk)= valid

if s′� Signsk(M), then Verify(s′,M ,pk)= invalid except for a negligible probability

unforgeability:

• black-box creating signatures on demand of the adversary for messages of his choice

• adversary wins if presents a valid signature that was not the output of the blackbox

some leakage of secret key possible – as far as unforgeability still holds
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Schemes with appendix:

components: one-way function F , message encoding µ

signing: s8 F (µ(M), sk)

verification: Verify(s, µ(M), pk)= ?

Crucial issue: embedding µ
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Signature with message recovery

components: one-way function F , message encoding µ

signing: s8 F (µ(M), A, sk)

verification: (status,M)8 Recovery(s,A, pk) where status∈{valid, invalid}
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RSA signatures – basic form

i. h8 µ(M)

ii. s8 hd modn for the secret d

iii. output s

textbook version: µ=Hash
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Multiplicative properties:

µ(M)=
∏

µ(Mi)
αi

implies that

s(M)= s(Mi)
αi modn

Attack: if µ maps to integers with small factors, then finding such α’s is doable

(e.g. if images of µ are relatively small)

⇒ existential forgery possible no matter how “random” is µ

such RSA might be insecure!
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Examples:

ANSI X9.31: µ(M)= 6‖bb
 .ab‖ Hash(M) ‖HashID

PKCS#1v1.5: µ(M)=00‖01‖PS‖00‖HashID‖Hash(M) where PS is a string of FF octets

wrong padding: µ(M)= a ·M + b (for short messages, if we append M with fixed bytes)
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RSA with message recovery

ISO9796-1 RSA (M of at most half length of length of n) - completely broken

ISO9796-2 RSA:

signing:

i.M =mL‖mR

ii. P 8 6A‖mL‖Hash(M)‖BC

iii. s8 P d modn

iv. output s,mR

verification:

i. P 8 semodn

ii. check format of P , derive mL

iii. recompute Hash(M) and compare with P
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Boneh-Boyen signature scheme -secure in the standard model

setup: bilinear map e:G1×G2→GT , generators g1, g2 of G1, G2 , cyclic with order p

key generation: choose x, y at random, ζ = e(g1, g2),

pk=(g1, g2, g2
x, g2

y, ζ), sk=(x, y)

signing message m:

i. choose r at random such that x+m+ y · r�0mod p ,

ii. σ8 g1
1/(x+m+y·r)

iii. output (σ, r)

verification:

signature valid iff e(σ, g2
x · g2

m · (g2
y)r)= ζ

let us check:

e(σ, g2
x · g2

m · (g2
y)r)= e

(

g1
1/(x+m+y·r)

, g2
x+m+y·r

)

= e(g1, g2)
x+m+y·r/(x+m+y·r)=e(g1, g2)= ζ
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security assumption q− SDH

for bilinear groups:

given (g1, g1
x,
 , g1

xq

, g2, g2
x) compute a pair

(

c, g1
1/(x+c)

)

for any c

let us show that forgery of the signature implies breaking q− SDH:

− for a simpler signature where σ= g1
1/(m+x)

− proof for model where:

messages to be signed are created before public key is given

− 2nd part of the proof (omitted):

Boneh-Boyen signatures can be forged ⇒

simplified signatures can be forged in the above model

(this is the reason why we need y in the scheme)
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reduction: forgery ⇒ breaking q− SDH

given instance of q− SDH: (g1, d1,
 , dq, g2, h)

• choose m1,
 ,mq

• define f(X)=
∏

i=1

q
(X −mi), expand to f(X)=

∑

αi ·X
i

• take random θ

• set g1
′: =

∏

di
αi·θ (so g1

′ = g1
f(x)·θ) , g1

′ uniformly distributed, independent of g2

• set ζ ′: =e(g1
′, g2)

• set pk=(g1
′, g2, h, ζ

′)

• simulate signatures for mi:

a) define fi(X)= f(X)/(X −mi)=
∏

j� i
(X −mj)

b) expand fi(X)=
∑

βj ·X
j

c) σi8

∏

dj
βi·θ so σi= g1

′1/(mi+x) – signature!
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Now use the algorithm to create a forged signature σ∗ for m∗

• note that: σ∗= g1
′1/(m∗+x) =g1

θ·f(m∗)/(m∗+x)

• express f in the following way: f(X)= (m∗+X) · γ(X)+ γ∗

• f(X)/(m∗+X)= γ(X)+γ∗/(m∗+X)

• σ
∗

1/θ= g1
γ(X) · g1

γ∗/(m∗+x)

• expand γ(X) and compute g1
γ(X)

• finally solve for g1
1/(m∗+x)

q-SDH solved!
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From restricted model to security of full signature

• assume that there is a forger A for the full scheme, we are going to create a forger B for
a restricted model/signature

• B creates w1,
 , wk at random and in response gets

− a public key (g1, g2, u, z)

− signatures σ1,
 , σk

• B sends to A the public key (g1, g2, u, g2
y, z)

• A starts to work. It requests a signature for wi:

− B responds with σi and ri where mi+ ri · y=wi (so σi= g1
1/(wi+x)= g1

1/(mi+x+ri·y))

• finally A forges a signature σ∗ = g1
1/

(

m∗+x+r∗·y
)

which is a signature for the reduced
scheme for message m∗+ r∗ · y

existential forgery suceeded!
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recall Schnorr signature

network protocols, Bitcoin, ...

Setup:

g- generator of a subgroup of prime order q, computations mod p where p prime

− private key: x< q chosen at random

− public key: X = gx mod p

Signature creation:

i. k < q chosen at random,

ii. r8 gk mod p

iii. e8 Hash(M, r)

iv. s8 k− e ·xmod q

v. output (s, e)

Verification:

signature valid iff e=Hash(M, gs ·Xe)

16



No security proof in the standard model

consequence: weakness of Hash ⇒ disaster

example: assume that for e=Hash(M,r) one can find M ′, δ such that e · δ=Hash(M ′, rδ)

then s · δ= k · δ−(e · δ) ·xmod q

s · δ=(k · δ)−Hash(M ′, gk·δ)

and one can present a signature for M ′ based on signature for M without using x:

i. recompute r= gk from (s, e)

ii. find M ′, δ

iii. output s′= s · δ mod q, e′=Hash(M ′, rδ)
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Schnorr Signatures in Random Oracle Model

assume that algorithm A can forge signatures for ROM for Hash

scenario:

• device running A

• oracle for Hash running according to ROM

derivation of secret key:

i. run the algorithm forging a signature, (s, e) obtained for M

− at some moment A asked oracle for Hash(M, r) where r = gs ·Xe , otherwise the
hash value would be not fixed and during verification set to something probably �e

− so at this moment r is already fixed!
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ii. rewind the forging algorithm to the moment of asking the oracle: restore the same state
of all registers, continue

− the answer for Hash(M, r) changed to e′

− the signature afterwards is computed in deterministic way: s′= log (r)− e′ ·xmod q

(the previous was: s= log (r)− e ·xmod q

iii. solve:

s− s′=(log (r)− log (r))− (e− e′) ·xmod q

x=(s− s′)/(e′− e)modx
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One issue left:

− maybe the forger needs some valid signatures to create the next one

− so to forge a signature we need first to forge signatures in order to reduce to Discrete
Logarithm Problem?

Solution: simulation of signatures in ROM

i. choose s, e at random

ii. compute r8 gs ·Xe

iii. insert e in the hashtable for argument (M, r)

(if already there is an entry for (M, r) then backtrack)
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Signing Anonymous Transactions

idea:

• transactions records publicly available in a distributed ledger (DLT) ⇒ undeniability, no
backdating, possibility to detect double spending , against Money Laundering

• however, we must not create a public Big Brother

core mechanism for digital currencies:

cash hides money flow, this should be the key property of digital money as well

examples below will be taken from Monero
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User keys and hidden recipient

user keys (EC notation):

− private keys a, b

− public keys: A= a ·G, B= b ·G

− sometimes (a,B) revealed (tracking key) – if the transactions have to be deanonymized
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Creating transaction with a hidden recipient: (Alice sends to Bob)

− Alice fetches the public key (A,B)

− Alice chooses r at random, R8 r ·G

− Alice generates one-time public key P : =Hash(r ·A) ·G+B

− Alice uses P as a one-time destination key for the transaction containing metadata R
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Receiving a transaction by Bob

− Bob tries each transaction posted:

→ compute P ′

8 Hash(a ·R) ·G+B

→ if this is the right transaction, then P =P ′ and Bob knows it is for him

− Bob calculates the one-time private key:

x=Hash(a ·R)+ b

− Bob can spend the money obtained in the transaction by signing with x

Remarks:

1: Receiving a transaction possible with (a,B), while (a,B) does not enable to compute x

2: Still only a partial anonymity: using x and the public key P would indicate who has got
transaction with P from Alice
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One time ring signatures

idea:

− instead of signing with x and showing P , a ring signature created:

− a set of public keys P1, P2,
 ., Pm from transactions chosen at random (transaction
value must be the same)

− x used for signing

− any two ring signature of this kind created with x will be linked immediately

Goals achieved:

− double spending exposed

− m-anonymity concerning where the e-coin comes from
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Creating one-time ring signature

for key pair (x, P )

1. compute image key

I8 x ·Hash(P )

2. choose a ring of keys P (P0,
 ., Pn) where Ps=P for some s

3. choose q0,
 ., qn at random

4. choose w0,
 ., wn at random, except for ws

5. calculate for i� s

Li8 qi ·G+wi ·Pi

6. calculate Ls8 qs ·G
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7. calculate for i� s

Ri8 qi ·Hash(Pi)+wi · I

8. calculate Rs8 qs ·Hash(Ps)

9. calculate the non-interactive challenge:

c8 Hash(message, L0,
 ., Ln, R0,
 ., Rn)

10. calculate individual components:

− for i� s: ci=wi, and ri= qi

− cs8 c−
∑

i� s
ci

− rs8 qs− cs ·x

11. output signature (I , c0,
 ., cn, r0,
 ., rn)
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Verification

Li recomputed as Li
′

8 ri ·G+ ci ·Pi

Ri recomputed as Ri
′

8 ri ·Hash(Pi)+ ci · I

test:

∑

ci=Hash(message, L0
′ ,
 ., Ln

′ , R1
′ ,
 ., Rn

′ )
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Linking:

via the same I

Concept used:

to close the ring somewhere a schnorr signature must be created that applies to two generators
simultaneously:

• Ps (which is hidden)

• I (which is explicit)

Many extensions possible (e.g. a transaction signed with multiple keys)
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Shortcomings of anonymous transactions with ring signatures

crypto is the strongest component, the problem is elsewhere:

1. the size of the ring is relatively small (e.g. 5, 10)

2. if Bob floods the system with own transactions (e.g. 50% of volume), then the effective
size of each ring is substantially reduced from the point of view of B

3. how to choose the keys for the ring?

→ only the recent ones? then making atranaction with an old key reveals this key

→ all keys with the same probability? Then fast transactions exposed

→ ... many issues for traffic analysis

4. Conclusion: do not trust anonymous transactions blindly
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Deterministic versions - protection against weak PRNG implementations

predictable k in case of Schnorr: s= k− e ·xmod q enables to solve for x

Idea: remove randomness from signatures

example 1: EdDSA

like EC Schnorr signature on Eduards curve where

k8 Hash(x1,M)

where x1 is a part of the secret key and M is the message to be signed

other part for computing s= k−x0 · emod e
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BLS signature (Boneh–Lynn–Shacham)

for bilinear groups: pairing e:G×G→GT , secret key sk, public key pk= gx

signature creation:

signature(M)8 Hash(M)x

verification: of s for M

e(s, g)= e(Hash(M), pk)?
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Deterministic EC DSA (popular for cryptocurrency wallets)

Setup:

− elliptic curve E, point G∈E of prime order q (at least 160 bits)

− private key - random number x< q

− public key U = x ·G
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EC DSA signature creation

i. h8 Hash(M)mod q

ii. k generated at random, calculate k ·G,

iii. r: =x coordinate(k ·G)mod q

iv. s8 (h+x · r)/k mod q

v. output (r, s)

deterministic version: the same but k is an output of HMAC (see below)
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HMAC computation

i. h18 Hash(M)

ii. V 8 0x010x01
 0x01 , K8 0x000x00
 0x00

iii. K8 HMACK(V , 0x00, x, h1), V 8 HMACK(V )

iv. K8 HMACK(V , 0x01, x, h1)„ V 8 HMACK(V )

v. initialize empty string T

− run a loop until enough bits generated (the same length as q):

− V 8 HMACK(V ), T 8 T ‖V

vi. if T < q then k8 T , else restart with K8 HMACK(V , 0x00), V 8 HMACK(V )
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CRYSTALS Dilithium

“post-quantum” algorithm, finalist of NIST competition,

based on lattice crypto

Problem (easy) for linear algebra:

A ·y= zmod p, given matrix A and vector z find vectory

Problem - hard:

A ·y+e= zmod p, given matrix A and vector z find vectory and e that are small

all solutions (y,e ) form a “lattice”
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Algebra used:

− prime q=223− 213+1,

− n= 256, ring R=Zq[X ]/(Xn+1)
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Key generation

− vectors s1 and s2 are vectors from R with coefficients <η (small)
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Signature generation

− security parameters γ1, γ2 , β=maximum possible coefficient of c · si (<η · τ)

− y - consists of small elements

− w1 every number in the result truncated to high bits

− c contains τ elements ±1, otherwise zeroes

− condition in 11: if any coefficient exceeds the threshold then backtrack , parameters
chosen so that a fair probability to suceed
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Signature verification

Why w1
′ =w1?

HighBits(A ·z− c · t)=HighBits(A ·y) ?

A ·z− c · t=A · (y+ c · s1)− c · t=A ·y+A · c · s1− c · t=A ·y− c · s2

c · s2 has all coefficients <β, while LowBits (A ·y− c · s2) are <γ2− β
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Practical Challenge - size of the (public) keys and signatures

Further optimization to reduce the public key:

• A generated from a small seed on-the-fly

• not the whole t, only A · s1+ s2= b · t1+ t0

• signer has to provide a help vector of carry bits to mimic computation of HighBits
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Security Issues

Quantum Random Oracle? – computations taking into account many hash computations
at once

LWE Problem - Learning with Errors it is infeasible to distinguish between

− (A,u) where u chosen uniformly at random

− (A, t) where t=A · s1+ s2 for small s1, s2

SelfTargetMSIS

− given M ,A, t

− find c and a small norm vector y such that c=Hash(M, [A|I|] ·y+ c · t)

related problem MSIS:

find y with small coefficients such that [A|I|] ·y=0

ongoing research about assumptions ...
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PSEUDONYMOUS SIGNATURES

Application areas:

− while having the pseudonyms, how to authenticate digital data? Digital signatures would
solve the problem

− implementing GDPR rights in practice:

a data subject can authenticate the request (e.g. for data rectification) in a database
with pseudonyms by sending a request with a signature corresponding to the pseudonym

43



BSI Pseudonymous Signature:

•

keys:

− domain parameters DM and a pair of global keys (PKM , SKM)

− public key PKICC for a group of eIDAS tokens, the private key SKICC known to the issuer
of eIDAS tokens

− assigning the private keys for a user:

the issuer chooses SKICC,2 at random, then computes SKICC,1 such that

SKICC= x1+ SKM ·x2

− a sector (domain) holds private key SKsector and public key PKsector.

− a sector has revocation private key SKrevocation and public key PKrevocation

− sector specific identifiers I1
sector and I2

sector for the user:

I1
sector=(PKsector)

x1

I2
sector=(PKsector)

x2
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• signing: with keys x1, x2 and I1
sector and I2

sector for PKsector and message m

i. choose K1, K2 at random

ii. compute

− Q1= gK1 ·(PKM)K2

− A1=(PKsector)
K1

− A2=(PKsector)
K2

iii. c=Hash(Q1, I1
sector , A1,2

sector , A2,PKsector,m)

(variant parameters omitted here)

iv. compute

− s1=K1− c ·x1

− s2=K2− c ·x2

v. output (c, s1, s2)

45



• verification:

compute

− Q1
′ =(PKICC)

c · gs1 ·(PKM)s2

− A1
′ =(I1

sector)c · (PKsector)
s1

− A2
′ =(I2

sector)c · (PKsector)
s2

− recompute c and check against the c from the signature

• why it works?

(PKICC)
c · gs1 ·(PKM)s2=(PKICC)

c · gK1 ·(PKM)K2 · g−c·x1 ·(PKM)c·x2

=(PKICC)
c · gK1 ·(PKM)K2 · g−c·x1 ·(g)−c·SKM ·x2

=(PKICC)
c · gK1 ·(PKM)K2 · g−c·SKICC = gK1 ·(PKM)K2=Q1

• there is a version without A1, A2 and the pseudonyms I1
sector , I2

sector
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Problems:

− the issuing authority knows the private keys

but: there is a way to solve it when the user gets two pairs of keys on the device and
takes their linear combination)

− breaking into just 2 devices reveals the system keys
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