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Encryption function:

− Enc: keyspace×{0, 1}∗→{0, 1}∗

− or: Enc: keyspace×{0, 1}m→{0, 1}k if Enc defined for blocks of size m

notation: C8 EncK(M) means that C is a ciphertext of plaintext M

Enc: keyspace×{0, 1}∗→{0, 1}∗

Decryption function:

− Dec: keyspace×{0, 1}∗→{0, 1}∗ (or Dec: keyspace×{0, 1}k→{0, 1}m

notation: M8 DecK(C)

Of course:

M =DecK(EncK(M))
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Encryption as a Random Oracle Permutation

ideal situation: Random Oracle

− on request EncK(M) check if there is a tuple (K,M ,X) in the table T

i. if yes, then return X

ii. if no, choose Z at random that it is different from all X such that (K,∗,X) is already
in T , insert (K,M ,Z) in T and return Z

− on request DecK(C) check if there is a tuple (K,M ,C) in T :

− if yes , then return M

− if no, choose U at random that is different from all M such that (K,M ,∗) is already
in T , insert (K,M ,Z) in T and return Z
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How secure is Encryption?

given ciphertexts C1,
 , Cn.

Cryptanalysis: provide any information about the corresponding plaintexts M1,
 ,Mn

• if Enc: keyspace×{0, 1}m→{0, 1}m then some information leaked: Mi=Mj⇔Ci=Cj

• if Enc: keyspace×{0, 1}∗→{0, 1}∗ then some information leaked via the length

• some pairs (M,C) (plaintext,ciphertext) might be already known

• a priori knowledge about probability distribution of plaintexts available
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Full answer from information theoretic point of view:

assign probability to each tuple (P0,
 , Pn ) for :

DecK[C1,
 , Cn] = [P0,
 , Pn]

(also taking into account a priori information)

Computational (in)feasibility: typically infeasible due to the number of possibilities for
(P0,
 , Pn)

Alternative: list the plaintexts for each key (infeasible, if keylength ≥128)

Task: concentrate on some function F (P0, 
 , Pn) treating P0, 
 , Pn as functions of the
random variable K (key)
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Ideal situation

for each tuple (P0,
 , Pn ) the probability of

DecK[C1,
 , Cn] = [P0,
 , Pn]

is the same (or almost the same)

But may be we demand too much?

• some property F (computable and in some sense valuable for cryptanalyst - e.g., P0<P1)

• estimate probability that

F (DecK[P0,
 , Pn))= true
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Semantic security - Chosen Plaintext Attack (IND-CPA)

left-or-right game:

1. the adversary chooses messages M0 and M1

2. the challenger chooses bit b at random and sets C8 EncK(Mb)

3. the adversary analyses C and returns b′

the adversary wins if b′= b

advantage of adversary is ǫ if: probability to win is 0.5+ ǫ

(pbb to win =0.5 , if the answer is random)
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Relation to the former approach

if the adversary may derive a non-trivial property F of the plaintext, then Enc is not IND-
CPA secure:

1. the adversary chooses messages M0 and M1 so that F (M0)= false, F (M1)= true

2. the challenger chooses bit b at random and sets C8 EncK(Mb)

3. the adversary attempts to compute F (DecK(C)) (without K !)

i. if true, then b′: =1

ii. if false, then b′: =0

∗ Corollary:

Enc is IND-CPA secure ⇒

no nontrivial property of the plaintext may be derived based on plaintexts only
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Adaptive chosen-ciphertext attack -- Indistinguishability IND-CCA2

left-or-right game:

1. the adversary chooses arbitrarily C1,
 , Cn, N1,
 , Nm

2. the challenger decrypts C1,
 , Cn and encrypts N1,
 , Nm

3. the challenger chooses messages M0,M1

4. the adversary chooses bit b at random and sets C8 EncK(Mb)

5. steps 1-2 repeated for new data, but questions about C,M0,M1 are ignored

6. the adversary returns b′

the adversary wins if b′= b
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Converting IND-CPA into IND-CCA2

simple idea: ciphertexts are impossible to guess,

⇒ the adversary will (almost) always get the answer invalid from decryption oracle

Example of suitable encryption: of M

i. T 8 M ‖Hash(M)

ii. C8 EncK(T )

Probability that a chosen C ′ will be a valid ciphertext ≈0

Version 2: use HMAC instead of Hash
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Consequence

Enc: keyspace×{0, 1}m→{0, 1}k where k≫m

(reason: information theory)
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Keylength - historical remarks

DES algorithm from 70’s:

− keylength =64, but

− key = 8 bytes, but each byte contains a parity bit

− effective keylength = 56

countermeasure was: 3DES

3DESK,K ′(M)=DESK(DESK ′

−1(DESK(M)))

− backwards compatible with DES (set K ′=K)

− effective keylength =112

− ... still many devices with 3DES used ...
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Randomized versus deterministic encryption

problem: if Enc deterministic, then any repetition of plaintext immediately visible

solution: randomized encoding a a plaintext:

M of length k− δ where δ≫ log (potential number of encryptions ofM)

i. choose padding of length δ

ii. calculate C8 EncK(M ‖padding)
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While solving one problem we have created another one:

a place for information leakage via rejection sampling by malicious encryption device

Rejection sampling:

key Γ shared by encryption device and the adversary

Malicious encryption:

1. choose padding of length δ

2. calculate C8 EncK(M ‖padding)

3. calculate Z8 HMAC(Γ, C)

4. if (n most significant bits of Z) � S, then goto 1

5. output(C)

∗ Adversarial decryption:

1. S8 nmost significant bits of HMAC(Γ, C)
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weakness and strength of rejection sampling

− n must be small, but leaking a few bits per ciphertext is easy

− undetectable as long as Γ unavailable and HMAC is secure

So what to do?

− chaining

− counters

− ...
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Some other issues (IND-CCA2 does not authomatically mean security in practice)

• related keys: what if similar keys provide similar ciphertexts?

− brute force easier since it suffices to come into a vicinity of the sought key

− so: avalanche effect needed: one bit changed in the key and the result is completely
unrelated

• physical attacks:

i. compute C8 EncK(M)

ii. set an unknown keybit ki of K to 1 with a high precision laser, new key =K ′

iii. compute C ′

8 EncK ′(M)

iv. if C ′=C, then ki=1, else ki=0

v. goto i to learn other unknown keybits

countermeasure: key stored together with a MAC and correctness of MAC checked at
each encryption
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Block ciphers

− each plaintext is a block of a fixed length

− Enc: {0, 1}k×{0, 1}m→{0, 1}m

Notes:

• randomization , turning into IND-CCA2 will be handled on top of it

• to solve: how to encrypt shorter and longer messages?

• choice of m: big enough to prevent creating a codebook

but not too big: otherwise problems with operating systems, complexity of mixing within
a block
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Round concept

• encryption (decryption) consists of a number of identical rounds (with few exceptions)

• each round uses round keys

• total length of round keys ≫ keylength, so round keys derived by separate KeySchedule

algorithm
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Challenge

− round function should use “one-way’ functions to prevent decription by solving some
equations ...

− ... but we need to invert encryption witin the decryption process
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Solution: Feistel architecture

This figure was uploaded Julio Hernandez-Castro
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round i: intermediate state (Li, Ri)

encryption in round i+1:

Li+1=Ri, Ri+1=Li⊕F (Ri,Ki),

decryption in the reverse order of rounds:

Ri=Li+1, Li=Ri+1⊕F (Li+1,Ki).

Why it works?

Li=Ri+1⊕F (Li+1,Ki) iff Ri+1=Li⊕F (Li+1,Ki)

but Li+1=Ri so ... iff Ri+1=Li⊕F (Ri,Ki)
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S-Boxes concept – example DES

• DES has Feistel structure

• the crucial point: round F function

• old design: short words

• S-Boxes – very carefully selected functions {0, 1}6→{0, 1}4 (so not invertible!)

• complicated interconnections that are easy to route with special purpose hardware but
hard for general purpose processors
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By User:Hellisp - File:Data Encryption Standard

InfoBox Diagram.png, CC0, https://commons.wikimedia.org/w/index.php?curid=33316542
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AES competition (Advanced Encryption Standard)

finalists:

• Rijndael (winner, as AES)

• MARS, RC6, Serpent, Twofish (based upon Blowfish)

some of them widely available in libraries and popular
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Twofish by Bruce Schneier, whitepaper
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MDS - maximum distance separable matrix

PHT - pseudo Hadamard Transformation

four Keyed S -boxes

− bijective functions

− key-dependant (key material precomputed and added during computation)

− using fixed permutations q0 and q1 (“carefully chosen”)
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the Sbox (whitepaper by authors)
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Encryption Modes

Electronic Codebook (ECB): Ci=EncK(Pi)

not really useful unless each block different (e.g.: contains a block index ) :

− if Pi=Pj then Ci=Cj
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Cipher Block Chaining (CBC)

encryption: C0= IV, Ci+1=EncK(Ci⊕Pi+1)

decryption: Pi+1=DecK(Ci+1)⊕Ci

advantages:

− Pi=Pj does not imply that Ci=Cj

− Ci depends on P1,
 , Pi

disadvantages:

− replacing a single plaintext block requires re-encryption from this block to the end
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Malleability

CBC: if the plaintext is known, then one can change every second block to a desired value
(every second block would be junk):

− recall that Ci=EK(Ci−1⊕Pi)

− replace Ci−1 with Ci−1⊕Pi⊕P ′

− effect: then the ith block decrypts to P ′ (while block Pi−1 will become junk):

New(Pi)= new(Ci−1 )⊕DecK(Ci )= (Ci−1⊕P
i
⊕P ′)⊕ (Ci−1⊕Pi)=P ′
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Padding attack (Serge Vaudenay)

Attacked scenario:

− the plaintext should consist of some number of blocks of length =b

− padding is always applied (even if unnecessary)

− if i positions have to be padded: the padding consists of i bytes, each of them is i.

− So: removing padding is obvious

− encrypt the resulting padded plaintext x1, 
 ,xN in the CBC mode with IV (fixed or
random):

y1=Enc(IV⊕ a1), yi=Enc(yi−1⊕xi)

− properties:

− efficient

− warning: do not repeat IV. (if IV fixed, then one can check that two plaintexts have
the same prefix)
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Attack:

− manipulate cipertext

− destination node decrypts, padding might be incorrect

− how to react to incorrect padding? Each reaction will turn out to be wrong:

→ reaction “reject”: creates padding oracle (attacker can see that some manipulations
result in correct padding)

→ reaction “proceed”: enables manipulation of the plaintext data
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option “reject”, last word oracle:

− goal: compute a=Dec(y) for a block y

− create an input for the padding oracle:

− create a 2 block ciphertext: r= r1
 rb chosen at random, c8 r |y

− oracle call: if valid (c) , then Dec(y)⊕ r should yield a correct padding.

− whp this happens if ab= rb⊕ 1 (that is, if the padding consists of a single “1”).

− other options: suffix “22”, “333”, “4444”,.... are less probable
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Fishing out the cases of a longer suffix

− it may happen that the oracle says valid because of other correct padding.

− Solution (idea: change consequtive words in the padding until invalid):

1. pick r1, r2
 , rb at random, take i=0

2. put r= r1r2
 rb−1(rb⊕ i)

3. run padding oracle on r |y, if the result invalid then increment i and goto (2)

4. /* now we have a correct padding of an unknown length

5. for j= b to 2:

r8 r1
 rb−j(rb−j+1⊕ 1)rb−j
 rb

/* attempting to disturb padding, from left to right

ask padding oracle for r |y, if invalid then output (rb−j+1⊕ j)
 (rb⊕ j) and halt

6. output rb ⊕ 1 /* manipulating all positions except the rightmost one create no
error ⇒ the padding has length 1, so yb⊕ rb=1 or yb= rb⊕ 1
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block decryption oracle

let a1
 ab be the plaintext of y

decryption:

− get ab via the last word oracle

− proceed step by step learning aj−1 once aj ,
 , ab are already known

1. set rk8 ak⊕ (b− j+2) for k= j ,
 , b /* preparing the values so that the padding
values (b− j+2) appear at the end)

2. set r1,
 , rj−1 at random, i8 0 /* search for the value that makes a proper padding

3. r8 r1
 rj−2(rj−1⊕ i)rj
 rb

4. if output on r |y is invalid, then i8 i+1 and goto 3

5. output rj−1⊕ i⊕ (b− j+2)
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decryption oracle

− block by block, (after decryption we have to XOR with the previous ciphertext block due
to CBC construction)

− the only problem is the first block if IV is secret

36



BEAST

attack, phase 0:

1. P to be recovered (e.g. a password, cookie, etc), requires ability to force Alice to put
secret bits on certain positions

2. force Alice to send a ciphertext of 0
 0P0 (requires malware on her computer), where
P0 the last byte of P

3. eavesdrop and get Cp=Enc(Cp−1⊕ 0
 0P0)

4. guess a byte g

5. force Alice to send encrypted plaintext Ci−1⊕Cp−1⊕ 0
 0g :

then Alice sends Ci=Enc(Ci−1⊕Ci−1⊕Cp−1⊕ 0
 0g )=Enc(Cp−1⊕ 0
 0g )

6. if Ci=Cp then P0= g
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attack phase 1:

1. P0 already known

2. force Alice to send 0
 0P0P1 and proceed as in phase 0

phases 2-15 until the whole P0
P15 learned

protection: browser must be carefully designed, injecting plaintexts must be prevented
(SOP- Same Origin Protection).
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How to encrypt a disk?

CBC – problems:

• place for initial vector IV

• updates (necessity to re-encrypt from the updated block)

• attacks discussed (malleability etc)
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LRW Liskov, Rivest, and Wagner

− C =EncK(P ⊕X)⊕X (⊕ denotes addition in the field)

where X =F ⊗ I (⊗ denotes multiplication in the field)

F is the additional key, I is the index of the block

− the issue of “red herrings”: encrypting the block F ||0n:

C0=EncK(F ⊕F ⊗ 0)⊕ (F ⊗ 0)=EncK(F )

C1=EncK(0⊕F ⊗ 1)⊕F ⊗ 1=EncK(F )⊕F

so F will be revealed
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Xor–encrypt–xor (XEX)

− XJ =EncK(I)⊗αJ

− CJ =EncK(P ⊕XJ)⊕XJ

− I is the sector number, J is the block numer in the sector and α is a generator
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XEX-based tweaked-codebook mode with ciphertext stealing
(XTS)

− IEEE 1619 Standard Architecture for Encrypted Shared Storage Media

− different key for IV than for encryption (“through misunderstanding XEX specification”)

− deals with the sector size not divisible by the block size

− problem: no MAC, one can manipulate blocks, something will be recovered!
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for the last block (a problem due to fixed size – one cannot use paddings!)

(picture on the next page)

i. expands the k byte plaintext with the last bytes of the ciphertext of the previous block,

ii. the resulting ciphertext stores in place of the ciphertext of the previous block

iii. the ciphertext from the previous block truncated to k bytes and stored as the last
ciphertext

for decryption: the missing n − k bytes are recovered from decryption of the ciphertext
of the last (originally) block
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Format preserving encryption

disk encryption is one of the cases of Format Preserving Encryption:

the size of the output must be exactly the same as the size of the
plaintext

example: encrypting credit card numbers in a database

challenge: redesign of block ciphers to small blocks is hardly possible
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Generic methods

Random walks

− a sequence of simple transformations determined by the (long) key, each transformation
is a permutation

− concept based on a random walk in a (relatively small) graph

− based on concept of rapid mixing of Markov chains and approaching the uniform distri-
bution
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Cycling

example: having a block encryption scheme Enc with blocks of length k create a FPE for
block length k− 1:

− append input x with a zero: x′

8 x‖0

− c′8 EncK(x
′)

− if c′= c‖0, then output c

− else c′′8 EncK(c
′)

− if c′′= c‖0 then output c

− else continue in the same way until getting a ciphertext of the form c‖0

decryption:

− c′8 c‖0

− decrypt c′ repeatedly until you get a plaintext of the form p‖0. Then output p

Problem: this approach does not work as FPE for really short data
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Feistel constructions - example

(pict. from Amon et al )

⊕ is bitwise XOR, ⊞ is modular addition

FF3 is one of two algorithms recommended by NIST as FPE
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ATTACKS on FF3

the attacks are generally of high complexity but for small plaintext size they may be still
dangerous

example: message recovery attack

− an unknown plaintext can be encrypted with chosen tweaks (important!)

− idea: characteristics and differential cryptanalysis:

→ difference only in L: X =(L,R), X ′=(L′, R)

→ after the first round difference not changed ( say (∆, 0) )

→ in the second round the output of the round function =0 with probability 1/2lengthof L

→ ... so with this probability the difference remains (∆, 0)

→ final ciphertext difference (∆, 0) with a fair pbb

− known L from (L,R), other input (L′, R) where L′, R are unknown, goal: learn L′

− collect ciphertexts with many different tweaks:

→ outputs (C,D) and (C ′, D ′) with difference (∆, 0) yield a candidate L′=L⊗∆
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Cipher Feedback mode (CFB)

Encryption: C0= IV, Ci+1=EncK(Ci)⊕Pi+1

decryption: Pi+1=Ci+1⊕DecK(Ci)

Advantages:

− Ci depends on all P1,
 ., Pi

− some advantage with encryption rate if Pi’s come irregularly
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Counter mode (CTR)

encryption

Yi=EncK(IV+ f(i)), where f is some counter function

Ci=Yi⊕Pi

decryption

Yi=EncK(IV+ f(i)),

Pi=Yi⊕Ci

(dis)advantages:

− in order to replace Pi by Pi
′ it suffices to compute

Ci8 Ci⊕ (Pi⊕Pi
′)

so only to use together with MAC (authenticated CTR mode)
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GCM (The Galois/Counter Mode)

background:

• popular as replacement for CBC mode (due to attacks presented!) and weaknesses of
RC4 (now forbidden in TLS)

• fundamental critics already before standardization

• finally (April 2018) Google decided to remove it until April 2019

• operations over GF(2128), addition in the field represented by ⊞

representation as polynomials of degree 127, operations modulo

x128+ x7+ x2+ x+1
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Computation:

1. H: =EncK(0
128)

2. Y0: =IV||0311 if length of IV should be 96

or Y0: =GHASH(H, {}, IV)

3. Yi: =incr(Yi−1) for i=1,
 , n (counter computation)

4. Ci8 Pi⊕EncK(Yi) for i=1,
 , n− 1 (counter based encryption)

5. Cn
∗

8 Pn⊕MSBu(EncK(Yn)) (the last block need not to be full)

6. T 8 MSBt(GHASH(H,A,C))⊕EncK(Y0)
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(wikipedia)
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Details of computation of the tag

GHASH(H,A,C)=Xm+n+1 where m is the length of authenticating information A, and:

Xi equals:

0 for i=0

(Xi−1⊞Ai ) ·H for i=1,
 , m− 1

((Xi−1⊞ (Am
∗ ||0128−v ) ) ·H for i=m

(Xi−1⊞Ci ) ·H for i=m+1,
 ,m+n− 1

((Xm+n−1⊞ (Cm
∗ ||0128−u ) ) ·H for i=m+n

((Xm+n⊞ (len(A)|len(C)) ) ·H for i=m+n+1
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Decryption:

1. H: =EncK(0
128)

2. Y0: =IV||0311 if length of IV should be 96

or Y0: =GHASH(H, {}, IV)

3. T ′

8 MSBt(GHASH(H,A,C))⊕EncK(Y0) , is T =T ′?

4. Yi: =incr(Yi−1) for i=1,
 , n

5. Pi8 Ci⊕EncK(Yi) for i=1,
 , n

6. Pn
∗

8 Cn
∗⊕MSBu(EncK(Yn))
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Fundamental flaws (by Nils Ferguson)

− engineering disadvantages: message size up to 236−64 bytes, arbitrary bit length (instead
of byte length)

− collisions of IV: the same pseudorandom string for encryptions

− collisions of Y0 also possible. Due to birthday paradox 264 executions might be enough
for 128-bit values, for massive use in TLS the number of executions 264 is maybe a threat
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Ferguson attack via linear behavior

− authenticating tag computed as leading bits of T =K0+
∑

i=1

N
Fi ·H

i where each Fi is
known but H is secret

− representing elements of GF(2128): X – as an abstract element of the field, Poly(X) –
as a polynomial over GF(2) with coefficients X0, X1, 
 ., X127, multiplication in the
field=multiplication of polynomials modulo a polynomial of degree 128

− multiplication by a constant D : X → D · X can be expressed by multiplication by a
matrix:

(D ·X)T =MD ·XT whereMD has size 128× 128

− squaring is linear: (A+B)2=A2+B2 (field of characteristic 2), so

(X2)T =MS ·X
T

where MS is a fixed 128×128 matrix (important point for the weakness!)
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− the goal is to find a collision, i.e. C ′ such that

∑

i=1

N

Ci ·H
i=

∑

i=1

N

Ci
′ ·H i

or its leading bits (taken to MAC) are the same. Then authentication would fail – one
could change the bits in a ciphertext C

− let Ci−Ci
′=Ei, so we look for a nonzero solution to

∑

i=1

N
Ei ·H

i=0

− we confine ourselves to Ei=0 except for i which is a power of 2. Let Di=E2i. Let 2
n=N

− we have to to find a solution for

ET =
∑

i=1

n

MDi
· (MS)

i ·HT

where E is an error vector that should become 0

59



− let

AD=
∑

i=1

n

MDi
· (MS)

i

− then we have ET =AD ·HT

− write equations to force a row of AD to be a row of zeros (then in the result the bit of E
corresponding to this row is 0), there is an equation for each bit, so 128 linear equations
for the whole row

− there are 128 ·n free variables describing the values Di (128 for each Di)

− find a nonzero solution describing the values of Di so that n − 1 rows of AD become
rows of zeroes

− consider messages of length 217, D0=0 due to issues like not changing the length

− D1, D2, .., D17 can be chosen so that 16 rows of AD are zero,

− GCM used with 32 bits MAC, so still 16 bits might be non-zero, so the chance of forgery
is 2−16

− Bad news: after collision found one can also find H! Then the game is over
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Poly1035

− designed by D. Bernstein, no patent

− 16 byte MAC, variable message length, 16 byte nonce

− works with AES, but AES can be replaced

− the only way to break Poly is to break AES

− keys: k - for AES, r - little endian 128-bit number

− some limitations on r because of efficiency of implementation

r= r0+ r1+ r2+ r3 where

r0∈{0, 1,
 , 228− 1}, r1/2
32∈{0, 4, 8, 12,
 , 228− 4},...
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− message: divided into 16 byte chunks. Each chunk treated as a 17-byte number with
little-endian, where the most significant byte is an added 1, the result for a message
is: c1,
 , cq

− authenticator

(((c1 r
q+c2 r

q−1+
 +cq r
1 )mod 2130� 5)+AESk (nonce))mod 2128

denoted also Hr(m)+AESk(nonce)

− 2130− 5 is a prime,

− a nonce must be usely once

− security: for random messages m,m′ of length L pbb that Hr(m) =Hr(m
′) + g is

at most 8⌈L/16⌉/2108 (all differentials have small probability)
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Cache attacks

cache architecture: simple addressing, if data kept in the cache, then response is almost
immediate
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subsequent blocks from memory go to different cache lines

• think about implementations based on lookup tables

• the attack aims to learn which parts of the lookup table has been used

• ⇒ this might say what are the intermediate values of some variables

• target situation: c= k⊕ p, where p is some plaintext byte(s), c learned through calls
to lookup table . Then we learn k
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cache measurement strategy: Evict+Time

i. procedure:

1. trigger encryption of a plaintext p

2. evict: access memory addresses so that one cache set overwritten completely

3. trigger encryption of the plaintext p

ii. in the evicted cache set one cache line from Tl is missing

iii. measure time: if long, then cache miss and the encryption refers to evicted δ positions
from the lookup table

iv. practical problem: triggering may invoke other activities and timing is not precise
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measurement: Prime+Probe

i. procedure

1. prime: overwrite entire cache by reading A: a contiguous memory of the size of the
cache

2. trigger an encryption of p – it results in eviction at places where lookup has occurred

3. probe: read memory addresses of A and detect which locations have been
evicted

ii. easier: probe timing checked, not the time at encryption
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− plaintext random but known, corresponds to the situation where one can trigger
encryption (e.g. VPN with unknown key, dm-crypt of Linux)

− phase 1: measurements, phase 2: analysis

− from experiments: AES key recovered using 65 ms of measurements (800 writes) and 3
sec analysis
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AES software implementation:

• particularly vulnerable because of its design

• AES defined in algebraic terms, but lookup table is typically faster

• there are arguments against algebraic implementations as the execution time may
provide a side channel

• key expansion: round zero: simply the key bytes directly, other rounds: key expansion
reversable (details irrelevant for the attack)

• fast implementation based on lookup tables T0, T1, T2, T3 and T0
(10)

, T1
(10)

, T2
(10)

, T3
(10)

for the last round (with no MixColumns)
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• round operation

(

x0
(r+1)

, x1
(r+1)

, x2
(r+1)

, x3
(r+1)

)

8 T0(x0
r)⊕T1(x5

r)⊕ T2(x10
r )⊕T3(x15

r )⊕K0
(r+1)

(

x4
(r+1)

, x5
(r+1)

, x6
(r+1)

, x7
(r+1)

)

8 T0(x4
r)⊕T1(x9

r)⊕ T2(x14
r )⊕T3(x3

r)⊕K1
(r+1)

(

x8
(r+1)

, x9
(r+1)

, x10

(r+1)
, x11

(r+1)
)

8 T0(x8
r)⊕T1(x13

r )⊕T2(x2
r)⊕T3(x7

r)⊕K2
(r+1)

(

x12

(r+1)
, x13

(r+1)
, x14

(r+1)
, x15

(r+1)
)

8 T0(x12
r )⊕T1(x1

r)⊕T2(x6
r)⊕T3(x11

r )⊕K3
(r+1)
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attack notation:

− δ=B/entrysize of lookup table, typically: entrysize=4bytes, δ= 16, (so δ entries of
a lookup table are within the same cache line – this is a complication for the attack!)

− for a byte y let 〈y〉= ⌊y/δ⌋, it indicates a memory block of y in Tl

− if 〈y〉= 〈z〉, then x and y correspond to requests to the same memory block of the
lookup table and therefore to the same cache line
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“synchronous attack”

− plaintext random but known, corresponds to the situation where one can trigger
encryption (e.g. VPN with unknown key, dm-crypt of Linux)

− phase 1: measurements, phase 2: analysis

− from experiments: AES key recovered using 65 ms of measurements (800 writes) and
3 sec analysis
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attack on round 1:

i. lookup tables queried for xi
(0)= pi⊕ ki for i=0,
 , 15

ii. goal: find information 〈ki〉 – one cannot derive lsb; candidates for ki denoted

by kī

iii. if 〈ki〉= 〈kī〉 and 〈y〉= 〈pi⊕ kī〉, then block y of Tl queried

iv. if 〈ki〉� 〈kī〉, then there is no lookup in block y for Tl during the first round, but

− there are 4 ·9−1=35 other queries affected by other plaintext bits during the
entire encryption - 4 per round, 9 rounds in total (the last round uses different
look-up tables)

− probability that none of them accesses block y for Tl is

(

1−
δ

256

)

35
≈ 0.104 for δ= 16
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v. few dozens of samples required to find a right candidate for 〈ki〉

vi. together we determine log (256/δ)= 4 bits of each byte of the key

vii. no more possible for the first round, still 64 key bits to be found, so one cannot
do the rest with a brute force

viii. in reality more samples needed due to noise in detection of cache misses
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attack on round 2: the goal is to find the still unknown key bits

i. we exploit equations derived from the Rijndeal specification:

x2
(1)= s(p0⊕ k0)⊕ s(p5⊕ k5)⊕ 2•s(p10⊕ k10)⊕ 3•s(p15⊕ k15)⊕ s(k15)⊕ k2

x5
(1)= s(p4⊕ k4)⊕ 2•s(p9⊕ k9)⊕ 3•s(p14⊕ k14)⊕ s(p3⊕ k3)⊕ s(k14)⊕ k1⊕ k5

x8
(1)=
 .

x15
(1)=
 .

where s stands for the Rijndael Sbox, and •means multiplication in the field with
256 elements
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ii. lookup for T2

(

x2
(1)
)

:

− 〈k0〉, 〈k5〉, 〈k10〉, 〈k15〉, 〈k2〉 already known

− low level bits of 〈k2〉 influence only low bits of x2
(1) so not important for cache

access pattern

− the upper bits of x2
(1) can be determined after guessing low bits of k0, k5, k10,

k15: there are δ4 possibilities (=164)

− a correct guess yields a lookup in the right place
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− an incorrect guess: some ki� kī so

x2
(1)⊕ x̄2

(1)= ci•s(pi⊕ ki)⊕ ci•s(pi⊕ k̄i)⊕


where ... depends on different random plaintext bits and therefore random

− differential properties of AES studied for AES competition:

Pr [ ci•s(pi⊕ ki)⊕ ci•s(pi⊕ k̄i)� z]> 1−
(

1−
δ

256

)

3

so probability for a wrong guess:

−
(

1−
δ

256

)

3
for not computing T2

(

x2
(1)
)

−
(

1−
δ

256

)

for not referring to the same cache line as T2

(

x2
(1)
)

for other

35 queries to T2

− together no access to this block of T2with pbb about
(

1−
δ

256

)

38

− this yields about 2056 samples necessary to eliminate all wrong candidates

− it has to repeated 3 more times to get other nibbles of key bytes

iii. optimization: guess ∆ = ki ⊕kj and take pi ⊕ pj = ∆, then i.e. s(p0 ⊕ k0) ⊕
s(p5⊕ k5) cancels out and we have to guess less bits (4 instead of 8)
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− complications in practice:

i. address of lookup tables in the memory - offset uknown, has to be found by
considering all offsets and then statistics for each offset (experiments show good
results even in a noisy environment)

ii. hardware prefetcher may disturb the effects. Solution: read and write the
addresses of A according to a pseudorandom permutation

− practical experiments: e.g. Athlon 64, no knowledge of adresses mapping, 8000
encryptions with Prime & Probe

Linux dm-crypt (disk, filesystem, file encryption): with knowledge of addressing, 800
encryptions (65 ms), 3 seconds analysis, full AES key
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“asynchronous attrack” on round 1

− no knowledge of plaintext, no knowledge of ciphertext

− based on frequency F of bytes in e.g. English texts, frequency score for each of
256

δ

blocks of length δ

− F is nonuniform: most bytes have high nibble = 6 (lowercase characters “a” through
“o”)

− find j such that j is particularly frequent indicates j=6⊕〈ki〉 and shows 〈ki〉

− complication: this frequency concerns at the same time k0, k5, k10, k15 affecting T0

so we learn 4 nibbles but not their actual allocation to k0, k5, k10, k15

− the number of bits learnt is roughly: 4 · (4 · 4− log4!)≈ 4 · (16− 3.17)≈ 51 bits

− experiment: OpenSSL, measurements 1 minute, 45.27 info bits o on the 128-bit key
gathered
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Countermeasures - all controversial and not satisfactory

• implementation based on no-lookup but algebraic algorithm (slow!!!) or bitslice
implementation (sometimes possible and nearly as efficient as lookup)

• alternative lookup tables: if smaller then smaller leakage (but easier cryptanalysis
for small Sboxes)

• data-independent access to memory blocks - every lookup causes a redundant
read in all memory blocks, generally: oblivious computation possible theoretically, but
overhead makes it rather useless

• masking operations: ≈“we are not aware of any method that helps to resist our
attack”

• cache state normalization: load all lookup tables - equires deep changes in OS
and reduces efficiency, even then LRU cache policy may leak information which part
has been used!

• process blocking: again, deep changes in OS

• disable cache sharing: deep degradation of performance
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• ”no-fill” mode during crypto operations:

− preload lookup tables

− activate “no-fill”

− crypto operation

− deactivate “no-fill”

the first two steps are critical and no other process is allowed to run

possible only in priviledged mode, cost of operation prohibitive
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• dynamic table storage: e.g. many copies of each table, or permute tables

details architecture dependent and might be costly

• hiding timing information: adding random values to timing makes the statistical
analysis harder but still feasible

• protect some rounds (the first 2 and the last one) with any mean – but may be
there are other attack techniques...

• cryptographic services at system level: good but unflexible

• sensitive status for user processes: erasing all data when interrupt

• specialized hardware support: crypto co-processor seems to be the best choice

but the problem is not limited to AES or crypto – many sensitive data operations are
not cryptographic and a coprocessor does not help
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