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2-Monte Carlo methods
Part 2



Estimating means and standard deviations:

e CLT: when computing the sum of iid random variables then the result
converges to normal distribution

* However: the parameters of normal distribution depend on Exp and Var:
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Expected value:
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So we have an unbiased estimator
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Variance:

The situation is more complicated:
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But we need to compute variance

Impossible, since we have only an estimator for the expected value

Solution (to be explained later) -- an unbiased estimator:

2-Monte Carlo, part Il



Estimating volume:

Naive approach: take grid points and check how many of them fall into a set A

Problem cases:
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(Very) Complicated cases:

Spaces where alone finding the elements as well as finding random elements
is hard

Example: maximal matchingsina graph G that contain an edge (u,v)
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General approach:

1. N random variables, Y(i) is an element of the space chosen with uniform
probability
2. X(i)=1iff Y(i) belongs to A, otherwise X(i)=0

Volume of A = E| % (X1 +...+Xn) ]
o o °,
Easier than interpretation of a picture | o
o N - ) - o® o
and drawing boundaries: ' °
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Monte Carlo integration:
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Accuracy:

s (7) = o
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Monte Carlo integration - improved:
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N = 1000; % Number of simulations
Z = randn(N,1); % Standard Normal variables
f = 1/sqrt(2*Pi) * exp(-Z."2/2); 7’ Standard Normal density
Iest = mean((g(2) £(Z))) %y Estimator of f_:’; g(z)dr
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Accuracy:
choose f such that (g(X)/f(X) )Jis nearly constant
then variance of aran variable R=g(X)/f(X) is small

= so the average has smaller variation as well

For f=1

0° = VarR = Varg(X) = E¢g*(X) — E%g(X) =

L I
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