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3-Stochastic processes



Stochastic process

* Time dependent random variables : time+space
« time:

X(.Jylc,o) .%g\r/ —I:e—[_—(t—-\e., "‘3651_,
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Examples:

* Trajectory of an particle

* Electromagnetic noise

e Rain
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Examples:

* CPU usage

* microcontrollers power consumption
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Discrete state process

Continuous state process
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Discrete time process

Continuous time process
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Markov process

only recent states count

Stochastic process X () is Markov if for any £, < ... < t;, < { and any sets
A Ay, ... A,

P{X(theA| X(t;) e Aq...., X(t,) e A,}
= P{X(t)e A| X(tn) € An}. (6.1)
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Markov chain

* discrete Markov process
* the state at time t+1 depend only on state at time t

pij(t)=P{X(t+1)=3| X(t) =i}
— P{X(t+1)=j | X(t) =i, X(t—1)=h, X(t—2)=g,...)

Transition probability:

4
iy (1) =P{X(t+H)=j| X(t) =i}

3-stochastic processes



Homogenous Markov chain

* Transition pbb do not depend on time

A Markov chain is homogeneous if all its transition probabilities are indepen-
dent of . Being homogeneous means that transition from ¢ to 7 has the same
fi) (h)

probability at any time. Then p;;(t) = p;; and jJ,E'J- (t) = py; -

M1 M2 -+ Mn \
P21 P22 -+ DPan

* Transition matrix

Pm1 Pmn2  --- ]T-i'i-m}

1 M
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Transition in 2 steps

py = P{X@2)=j| X(0)=i)
= Y P{X(1)=k| X(0)=i} P{X(2)=3j| X(1) =k}
k=1
N P1j
— Z PikPki = (Pi1,....Pin)
k=1 Pnj
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Transition pbb in two steps
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Probabilities at time t

* Transition matrix M of a homogenous chain

| )
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Transition diagram
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Transition diagram

2 users: active user disconnects with pbb 0.5
inactive user connects with ppb 0.2
X= number of active users

0.64
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Steady state distribution

A collection of hmiting probabilities

e = lim Pp(x)
h—r oo !

15 called a steady-state distribution of a Markov chain X (t).
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Example: no steady state distribution

random walk in a bipartite graph
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Computing steady state distribution

PoP = PyP"P =P,P"" = Puyy

mP = .
linear system, recallthat 2~ + = 4

L S
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Weather example cnt
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Existence of stationary distribution

A Markov chain 1s regular if
[h | ﬂ
pt_;l -

for some h and all i, j. That is, for some h, matrix P"™ has only non-zero
entries, and h-step transitions from any state to any state are possible.

Any regular Markov chain has a steady-state distribution.
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Algorithms based on Markov chains

Example: choose a maximal independent set in a graph at random (with
uniform probability)

Difficult:
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Approach:

Define a Markov chain:

* states = independent sets

e transitions: simple modifications (removing or adding nodes)
e ...so that the steady distribution is uniform
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Uniform steady distribution

Case of double stochastic matrix:

sum of each row is 1 (must be)
sum of each column is 1 (not all transition matrices)

THM: stationary distribution is uniform for a double stochastic transition
matrix

(4 ¢ J - (¢ 4
v\'ﬁji’)h | _:|"‘ “1
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Uniform steady distribution
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Absorbing states

No exit from an absorbing state
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Absorbing state example
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Algorithms based on absorbing state

Random walk through states based on Markov chain
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Counting processes

e.g. Bernoulli trials
State in time t = number of succeses in steps 1 through t

Expected number: p*t
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Counting processes

time frame A: one Bernoulli trial per A seconds

Expected number of successes:

Expected number of successes per second (arrival rate):

D

A
A
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Bernoulli counting process - interarrival time

gdzie Y ma rozkiad g -
; . 1 1
E{(T) = EYA=-A=—:
P A
Var(T}) = Var(Y)A? = (1 —p) (é)_ ') § 1 —_}p_
p A“
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Continuous counting process

a limit of Bernoulli counting process with time frame A 2> 0

The number of frames during time { increases to infinity,

n = & Too as A LD

The probability of an arrival during each frame is proportional to A, so it also decreases to
0,
p=AAL0 as A |0
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Continuous counting process

Then, the number of arrivals during time t is a Binomial(n, p) variable with expectation

| {
EX(t) = np — E — A

X (t) = Binomial(n,p) — Poisson(\)

lim ( ?; )prtl —p)" Tt = f?:_;'“%
n — OC i .
p—+ 0
np —+ A
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Continuous counting process

The interarrival time T becomes a random variable with the c.d.f.

Fr(t) =

PI{T <t} =P{Y <n}
I—(1—=p)
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bhecanse T' = YA and £t = n

Geometrie distribution of Y

because p = AA = At/n

This 15 the “Euler limit™:
(1+z/n)" —=e® as n —



Continuous counting process

P {T; <t} = P{ k-th arrival before time t } = P {X(t) > k}

where T}, is Gammal(k, A) and X (f) is Poisson(At).
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Applications

What is the probability that in time T more than k requests arrive
for a webpage P?

We assume that A is known (A requests per minute)
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Solution for A=7 hits per minute , assumed Poisson process

Pbb for 10000 hits within 24 hours?

Solution. The time of the 10, 000-th hit T} has Gamma distribution with parameters & =
10,000 and A = 7 min—'. Then, the expected time of the k-th hit is

k
= E(T.) = 3= 1.428.6 min or 23.81 hrs.

#

o= Std(TL) = % = 14.3 min.

3-stochastic processes



Pbb of more than 10000 hits?

A shortcut: CLT (we do not have to care about Gamma distribution!)

T —p 1440 — 1428.6
a 14.3

P {T}. < 1440} = F'{ } — P{Z < 0.80} = 0.7881.
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Conclusion

Easy way to solve many problems regarding required capacity ...
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