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4-Queuing systems



Problem

* jobs arrive as a random process

* server(s) take the jobs from the queue and serve (or drop)
E.g. first-in-first-out basis

* service time is also random

Examples: Web server CIED

. ﬁiiﬂ@——»
o

4-queuing systems




Main parameters

Parameters of a queming system

;-'IL_.-i — arrival rate = average number of jobs arriving in one time unit
As = service rate
g = 1/A4 = mean interarrival time
itg = 1/As = mean service time
i' = Aa/As = ps/pa = utilization, or arrival-to-service ratio
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Main parameters

Random wvariables of a queuing system

X:(t) = number of jobs receiving service at time ¢
Xw(t) = number of jobs waiting in a queue at time ¢
X“} — Xﬂ(f':] ‘|_Xw[t}:
the total number of jobs in the system at time ¢
S = service time of the k-th job
Wyr = waiting time of the k-th job
R = Sg+ Wy, response time, the total time a job spends in the

system from its arrival until the departure

A stationary system: S,, W, and R, 'do not depend on k

4-queuing systems



The Little’s Law for a stationary system

A\ E(R) = E(X)

Intuition: 1.2
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Proof of Little’s Law
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4 A(t), number of arrivals
by the time ¢
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Application

Example 7.1 (QUEUE IN A BANK). You walk into a bank at 10:00. Being there, you count
a total of 10 customers and assume that this is the typical, average number. You also notice
that on the average, customers walk in every 2 minutes. When should you expect to finish
services and leave the bank?

Solution. We have E(X ) = 10 and g4 = 2 min. By the Little’s Law,

_ E(X)

B(R) = —-

= E(X)ps = (10)(2) = 20 min.

SN ER) = E(X)
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Other corollaries

E(X,) = A1 E(W).

E{XS} — }.__‘1 E{(S] — .:’l.__‘lj_i-lg; — T
r = utilization = QA

s
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Bernoulli single server system

Bernoulli single-server queuing process is a discrete-time queuing process
with the following characteristics:

— one server
— unlimited capacity -- the waiting queue can by arbitrarily long

— arrivals occur according to a Binomial process, and the probability
of a new arrival during each frame is pa

— the probability of a service completion (and a departure) during
each frame i1s pg provided that there i1s at least one job in the system
at the beginning of the frame

— service times and interarrival times are independent
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Markov property

changing the queue size does not depend on history

poo = P{noarrivals} = 1—py
por = P{newarrival} = pyu
pii-1 = P { noarrivals ] one departure } = (1 —pa)ps
Pii = P { no arrivals (] no departures }
+ P{ one arrival [ one departure } = (1 —pa)(l—ps)+ paps
piiv1 = P {onearrival (] no departures } — pal(l —ps)
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applications

Distribution of the number of jobs in a queue after t steps
 Take only a part of the transition matrix

1 ’E’ : Smbhan..'l'\f.lx t?‘-l;
] °- ' 5 enougn for t GlepS \
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Another model: Queue maximal size C

pc.c—1 = (1 —pa)ps.
pc,c = (1 —pa)(l —ps) +paps +pa(l —ps) =1—(1 —pa)ps.
Example 7.3 (TELEPHONE WITH TWO LINES). Having a telephone with 2 lines, a customer
service representative can talk to a customer and have another one “on hold.” This is a

system with limited capacity C' = 2. When the capacity is reached and someone tries to
call, (s)he will get a busy signal or voice mail.
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Steady distribution?

Average 10 calls per hour, average duration 4 minutes

p_—l — ‘}l'_—l & — ]-_.I'IIIIG'I
ps = AsA = 1/4.
l1—pa PA 0
P = (1—pa)ps (1—pa)(l—ps) +paps pa(l—ps)
0 (1—pa)ps 1—(1—pa)ps

5/6 1/6 0
— | 5/24 2/3 1/8 |.
0 5/24 19/24
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Steady distribution
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Continuous time queuing system

An M/M/1 queuing process is a continuous-time Markov quening process
with the following characteristics,

—  one server;
— unlimited capacity;

—  Exponential interarrival times with the arrival rate A 4;
— Exponential service times with the service rate Ag;

— service times and interarrival times are independent.
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Limit of Bernoulli queueing system

poo = 1—pa = 1—A4A

Pio0 =  PA = AqA

Pii-1 = (1—pa ps = (1 -— )‘._‘1&}}.5& ~ AgA

Piic1 = pall—ps) = AAA(1l—-AsA) = A A
pii = (1—pa)(l—ps)+paps = 1—A41A8—AsA

( 1 —AAA AaAA 0 0 \
AsA 1 — A —AsA AaA 0
P 0 AsA 1—AsA - AsA AaA
0 0 AsA 1 —A4A — AsA
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Limit of Bernoulli queueing system — steady distribution

. 7P ==
Looking for rt such that { =1

To(l — AAA)+mAsA =1 = AAmg=AsAm = | Aamg = Agm
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moAa A\ + mi (1 — Ag A — }-.qfﬁ} +mAsA=m = (A +Ag)m = Agmo+ As
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And so on ...
AATi_1 = AgT; or T = T Mi_1
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Steady distribution
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Steady distribution

This distribution of X () is Shifted Geometric, because ¥ = X + 1 has the standard Geo-
metric distribution with parameter p =1 — r,

P{Y=yl=P{X=y—1}=my 1=r"11-r)=(1—-p)¥ 'p for y>1,

EX)=E(Y-1)=EY)-1=

1—r 1 —1r

Var(X) = Var(Y —1) = Var(Y) = (1 - )2
_r
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Waiting time for X jobs

W=54+5S+5+...+5x%

E(W)= E(S1 +...+5x) = E(5) E(X) = — (1 —1)
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Response time

E(R)= E(W)+ E(S) =

s T

1—r

+ g =
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Queue size

Ny =X — X,

E(X,) = E(X) - E(X,) =
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