Metody probabilistyczne i statystyka, 2021
informatyka algorytmiczna, WIiT PWr

6-Statistical Inference



Goal: parameter estimation

 population given

* distribution may be known (because of the nature of the
model)

e parameters of the model are to be determined

Example:
A of the Poisson distribution
Easy: A=E(X), so estimate the mean

Generally: expressions for mean, variance,... may contain
parameters to be estimated
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Strategic question:

which function(s) apply to the sample to get a reliable
information?
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Methods of moments

The k-th population moment 15 defined as

pr = E(X5).

The k-th sample moment

mk=%zxf

=1
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Central moments

i, = B(X — pyp)F
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Method of moments

L Iy

L ey

In this system:

* concrete values on the right side
e expressions with parameters on the left side
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Method of moments — example

Gamma distribution with parameters a, A:

w = EX) = a/A = my
o, = Var(X) /A2

ms5.
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Pareto distribution

Well describes the distribution of file sizes sent in the internet

Flr)=1— (i) J for x = .

ar
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Pareto distribution

Well describes the distribution of file sizes sent in the Internet

Flz)=1- (i) J for x = .

ar

flz)=F'(z) = E (_?) - N A

o s
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Pareto distribution

y = E{X::I=f .rfli.r]d.“c:f?crﬂf rYdx
il N Ho
= fo" = ., for 8 =1,
T Ter1_. -1

o o Hﬂ'z

fa = E{I2:}=/ T f{ﬁl:ﬂd'm:ﬁﬂ'g./ r " dr = 7o for £ = 2.
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Pareto distribution

Ber
A = m — T
o
[y = o = Mo
f = -"II e 4+1 and o= i |:"3’ — U
-\ ma —md | f '
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Method of Maximum Likelihood

Find parameters for which the obtained sample has
the highest probability
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Method of Maximum Likelihood —Discrete Case

Maximizing the probability of the observed sample:

P{X = (X;,....X,)} = P(X) = P(Xy,..., X,)) = [[ P(X)).
i=1

A trick: it is easier to maximize a sum than a product, so take logarithms:
It i
In| [ P(X:)=) InP(X;)
i=1 i=1
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Method of Maximum Likelihood —example Poison
distribution

AT
Probability: P(x) =e ",
Taking logarithms: In Plz) = —-A4+xInA — In(z!).

In P(X') = Z (—A4+XiInA)+C =—nA+InA Z Xi+C,

Maximize:
i=1
Finding local maximum: Eh“” — —n+ — Z X, =0
Solution: SRR 2
A= — X; =X,
>3

i=]
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Method of Maximum Likelihood — continuous case

I
| 211
o
Fa T 1 1
\X o This area = P{r—h < X < x+ h}
'\'\.‘\. | |
A i i = (2h) f(x)
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h ¢ z+h

FIGURE 9.1: Probability of observing “almost” X = .

Conclusion: take parameters such that f(X) is maximal
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Method of Maximum Likelihood — example: exponential
density

density: f(x) = Ae ",

sample density In: 1 /(X) = Y In(Ae M) =) (InA-AX;)=nlnA-2A) X,
=1 i=1 i=1

. . & ) 1 S
derivative: Sy F(X) =1 - Za =0,
. - 1 1
solution: A= S, - X
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Estimating the error of an estimate

estimator is a random variable and we wish to know how
concentrated is this estimator value around the true value
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Estimating the error of an estimate- example Poisson
distribution

already we have obtained an estimator forA: 1\ = X

Approach 1: o = /A for the Poisson(A)

Soo '!T'::..-jll.._:l — |"__F|::-_._1FJ = -!T.I.";HI.-"IW - 1IIIII .-"IIL_I-"I-.rll.

Thus: | X VXX
51 f1"L'| — 1||' ,
n n
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Estimating the error of an estimate- example Poisson
distribution

Approach 2: 7(X) = o/, soestimatedby s(X)=s/\n

o . @ |II1">_".|'_._ . —_,.F'IE
SO. -';12|r.-}'|.:|= ; _ I,'_-".,ﬁ-".! ﬁ".‘.-' .
: v \.‘ nin—1}
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Confidence interval

An interval [a,b] is a (1 — «)100% confidence interval for the parameter 6 if
it contains the parameter with probability (1 — a),

Pla<8<b}=1—n.

The coverage probability (1 — «) is also called a confidence level.
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Confidence interval for normal distribution

This area

equals
This area This area
equals (1 —a) equals
(a/2) | , (o/2)
- - | - S
—Za /2 () af2

6-statistical inference



Confidence interval for normal distribution

This area

equals
This area This area
equals (1 —a) equals
(a/2) | , (o/2)
- - | - S
—Za /2 () af2
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Confidence interval — for unbiased estimator with

normal distribution
after normalizing to Standard Normal distribution:

— 0
P{—24p0 < — < 2y p=1—c
' (@) '

P{Fﬁ'— 20/ a(f) < 6

< ) — Za /2 " nf{}]} =1 — o

a = H—._l_-; a(f)

Confidence interval [a,b] where: k
I?i' I",’.'— a2 fT'rﬂr.;IJl
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Application: confidence level for a sample mean

when it applies:

 sum of random variables with normal distribution

 alarge number of samples for any random variable due to
CLT

E(X) It
(T |_’ff ) (r 1.-"? :

Recall that:

So the confidence interval with endpoints: ¢ 4, |
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Confidence interval for difference between two means:

r"/ Population I \-, r"/ Population 11 \'a

Parameters: py, 0% | . Parameters: pty, oF ]

\. / \. /

e, - . -

l Collect independent samples l

Sample (Xq,...,X,) Sample (Yy...., }Fm]

Statistics: X, sy Statistics: V',

| B

\ |/E: onfidence inte Lntkﬂ . 4 |
for # = puy —py
- J
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Steps
1. estimator of meanvalue: ¢=X-Y (it is unbiased)

2. if the sample is large, then approximately normal distribution
3. estimate variance:

a(f) = "'. Var (X —Y) = 1 Var (X) + Var (V) = \I' '!'i‘ -

4. Confidence interval with endpoints:

X -V +z,, ‘» 9% 4+ v
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How big should be the sample size?
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How big should be the sample size?
Confidence interval depends on sample size n:
margin = z, /o - 0/ V.

So a simple rule:

In order to attain a margin of error A for estimating
a population mean with a confidence level (1 — a),

. . - '-:f.“t.-"? a0 = - .
a sample of size n = A ) 15 required.
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Confidence interval for unknown variance

Example: population with fraction p of objects with property A

number of sampled items from A

Sample proportion: p=

I
So 1 if icA 1 &
1*={u if igA *‘r’:ﬁzlﬁ”
i
(1 —
Var (p) = i P
T
. ) [9(1 — p)
Finally: Ptz \
' ' Tl
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Problem of small sample size

CLT does not apply anymore .

Recall normalization (for normal distribution):

_0—E@) 6-0

Z _ .
a(0) ()

For small sample we consider so called T-ratio:

; H—a
s()
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Student’s distribution

Introduced by W. Gosset (pseudonym Student):

6 — 8

s(8)
\
computed for a sample of size n for random variable with
normal distribution

for T-ratio: b —

Subtle issue: T-ratio is not normal (observe that denominator is
also an estimator)

True distribution: Student’s distribution with “n-1 degrees of
freedom”
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Using Students distribution:

For each n there are precomputed values for any confidence
interval — except that follow the same steps as for normal
distribution
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Example: difference between two variables with
the same variance:

assumption: 72 — o2 =2,

i

il
Y (Xi—XP+) (Yi-Y)
i=1 i—=1

sample variance: 0 (n—1)s% + (m—1)s}

5
P n+m— 2 n+m—2

confidence interval from Student’s distribution:

- r Illll 1
X —Y £i,/28; "l. n m

easy..
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Example: difference between two variables with
the different variance:

problem: not the Student distribution anymore!
no compact and clean solution

Approximation (only to see): 2 82\
1. computing “degree of freedom” ( n | om )
V= A —
X Y
ns(n — 1) t m2(m — 1)
2. Proceed with formulas for Student’s
distribution with this degree X V4t ‘» i
' T I
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Hypothesis testing

Population -- claimed property HO
-- alternative property H1
so that both cannot hold at the same time
Case 1:
Data from the whole population available:
one can say which of them is false

Case 2:
Only a sample available -- this is the most frequent case

which of HO and H1 is true, which is false???
medicine,
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Example

HO= the proportion of defect chips is 3%
H1 = the proportion of defect chips is >3%
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Test outcomes

Result of the test

Reject H;, | Accept H,

Hy is true | Tvpe I error correct

Hy is false correct Tvpe II error

Example: biometric recognition, Al
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Test outcomes

Example: biometric recognition
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Significance level of a test

For type 1 error:

o = P {reject H, | Hy is true}
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Power of the test

Alternative test H, with parameters 6

p(#) = P {reject Hy | 8;: H, is true} .
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General approach

* H, corresponds to some distribution F,

* define statistic T

* define acceptance and rejection regions so that probability
of values from rejection regions is at most a

Jo(T') 4 -
Rejection Significance level = P { Type I error }
region,
probability o — P{ ]{{_1.]{_1{3[ 1”.;}}
Acceptance when Ho is true — P {T R | H. }
region, T 0
probability {1 — «) S — (k.
when Hy 1s true T iy S
[ | T ——
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For normal distribution mean 0 — two sided Z test

Reject
if T" 1s here

Reject
it T" is here Accept

if T 18 here

| —
— %o 2 0 “ox 2 r
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Right tail alternative

(a) A level ¢ test with a right-tail alternative should

reject Hy it 7= z.
accept Hy 1 2 <z,

/ \ Reject

if T" i1s here

Accept \
1f T 15 here \/ %

(a) Right-tail Z-test
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Left tail alternative

With a left-tail alternative, we should

reject Hy it £ < —z,
accept Hy if 2 >-—z,

Reject /\

T 18 here \
\
Accept
\/ if T is here \

[(h) Left-tail Z-test
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Choosing a

Delicate issue, a tradeoff between errors of type 1 and 2

Reject
it T" is here

Reject
it T' is here Accept

if T" is here

—Za )2 0 Zox /2 T
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P-value

For a given observation which values of a force rejection of H,
and which force acceptance of H,?

P-value is the boundary between

these regions of a

6-statistical inference

(a) Small o
Accept Hy

Accept
Hy

0

P
same Z g \

(b) Large o,
Reject Hy,

Accept \
_.-"'// IIU ‘H'u..

%(.I])F HT I

0



P-value

Testing Hy
with a P-value

For o < P,
For o = P,
Practically,

If P < 0.01,
If P = 0.1,

accept Hy

reject Hy

reject Hg

accept Hy
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Confidence intervals and testing for the
variance

Important for making decisions based on a sample:
-- system reliability

-- quality testing
.. ho room in cyber-physical systems
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Variance unbiased estimator

1

s = i — 1 Z [‘Y*' - ‘Y}g

the values (X:—X)" are not independent:
d each X; occurs in the sample mean
(1 CLT can be applied only for large n

 distribution of s? is not even symmetric
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Distribution of variance?

Assumption: X, ..., X, -- independent, normally distributed with

variance o
(n—1)s° B Z (}[.- —}:')j
7 N (F

=1

15 Chi-square with (n — 1) degrees of freedom

Density: 1 11—
flx) = T (/) e - |}

k3
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Chi-square distribution

A case of Gamma distribution:

Chi-square(rr) = Gamma(r /2, 1/2),

Deriving from general formulas for Gamma distribution:

E(X)=1r and Var(X)=2v.
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Chi-square distribution

flz) | |

0.241]

0.1+

(

FIGURE 9.12: Chi-square densities with v = 1, 5, 10, and 30 degrees of freedom. Each
distribution is right-skewed. For large v, it is approximately Normal.
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Confidence interval

distribution not symmetrical, so the confidence interval is not of
the form s¥a
» two values must be read from precomputed lookup tables

flz) 4

oy 2 ]ﬂl.-'E —_—

E 2
X1—a/2 Xa/2
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Confidence interval

Confidence interval (n—1)s2 (n—1)s

for the variance 2 ' 2
[ j"'n‘!- . X | —ax (2
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