Metody probabilistyczne i statystyka, 2021 informatyka algorytmiczna, WIiT PWr <u>6-Statistical Inference</u>

Goal: parameter estimation

- population given
- distribution may be known (because of the nature of the model)
- parameters of the model are to be determined

Example: λ of the Poisson distribution Easy: λ=E(X), so estimate the mean

Generally: expressions for mean, variance ,... may contain parameters to be estimated _{6-statistical inference}

Strategic question:

which function(s) apply to the sample to get a reliable information?

Methods of moments

The k-th population moment is defined as

$$\mu_k = \mathbf{E}(X^k).$$

The k-th sample moment

$$m_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$

Central moments

$$\mu'_k = \mathbf{E}(X - \mu_1)^k$$

$$m'_{k} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})^{k}$$

Method of moments

$$\begin{cases} \mu_1 &= m_1 \\ \dots & \dots & \dots \\ \mu_k &= m_k \end{cases}$$

In this system:

- concrete values on the right side
- expressions with parameters on the left side

Method of moments – example

Gamma distribution with parameters α , λ :

$$\begin{cases} \mu_1 &= \mathbf{E}(X) &= \alpha/\lambda &= m_1 \\ \mu'_2 &= \mathbf{Var}(X) &= \alpha/\lambda^2 &= m'_2. \end{cases}$$

Well describes the distribution of file sizes sent in the internet

$$F(x) = 1 - \left(\frac{x}{\sigma}\right)^{-\theta} \quad \text{for } x > \sigma.$$

Well describes the distribution of file sizes sent in the Internet

$$F(x) = 1 - \left(\frac{x}{\sigma}\right)^{-\theta}$$
 for $x > \sigma$.

$$f(x) = F'(x) = \frac{\theta}{\sigma} \left(\frac{x}{\sigma}\right)^{-\theta - 1} = \theta \sigma^{\theta} x^{-\theta - 1}$$

$$\mu_{1} = \mathbf{E}(X) = \int_{\sigma}^{\infty} x f(x) dx = \theta \sigma^{\theta} \int_{\sigma}^{\infty} x^{-\theta} dx$$
$$= \theta \sigma^{\theta} \left. \frac{x^{-\theta+1}}{-\theta+1} \right|_{x=\sigma}^{x=\infty} = \frac{\theta \sigma}{\theta-1}, \quad \text{for } \theta > 1,$$

$$\mu_2 = \mathbf{E}(X^2) = \int_{\sigma}^{\infty} x^2 f(x) \, dx = \theta \sigma^{\theta} \int_{\sigma}^{\infty} x^{-\theta+1} dx = \frac{\theta \sigma^2}{\theta - 2}, \quad \text{for } \theta > 2.$$

$$\begin{cases} \mu_1 &= \frac{\theta\sigma}{\theta-1} &= m_1\\ \mu_2 &= \frac{\theta\sigma^2}{\theta-2} &= m_2 \end{cases}$$

$$\hat{\theta} = \sqrt{\frac{m_2}{m_2 - m_1^2}} + 1 \text{ and } \hat{\sigma} = \frac{m_1(\hat{\theta} - 1)}{\hat{\theta}}.$$

Method of Maximum Likelihood

Find parameters for which the obtained sample has the highest probability

Method of Maximum Likelihood – Discrete Case

Maximizing the probability of the observed sample:

$$P\{X = (X_1, \dots, X_n)\} = P(X) = P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i),$$

A trick: it is easier to maximize a sum than a product, so take logarithms:

$$\ln \prod_{i=1}^{n} P(X_i) = \sum_{i=1}^{n} \ln P(X_i)$$

Method of Maximum Likelihood –example Poison distribution

 $\mathbf{72}$

$$P(x) = e^{-\lambda} \frac{\lambda^x}{x!},$$

Taking logarithms: $\ln P($

$$\ln P(x) = -\lambda + x \ln \lambda - \ln(x!).$$

Maximize:

$$\ln P(X) = \sum_{i=1}^{n} (-\lambda + X_i \ln \lambda) + C = -n\lambda + \ln \lambda \sum_{i=1}^{n} X_i + C,$$

m: $\frac{\partial}{\partial \lambda} \ln P(X) = -n + \frac{1}{\lambda} \sum_{i=1}^{n} X_i = 0.$
 $\frac{1}{2} \sum_{i=1}^{n} X_i = \bar{X}.$

12.

Finding local maximum:

Solution:

$$\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} X_i = \bar{X}.$$

Method of Maximum Likelihood – continuous case

FIGURE 9.1: Probability of observing "almost" X = x.

Conclusion: take parameters such that f(X) is maximal

Method of Maximum Likelihood – example: exponential density

density:
$$f(x) = \lambda e^{-\lambda x}$$
,

sample density In: $\ln f(X) = \sum_{i=1}^{n} \ln \left(\lambda e^{-\lambda X_i}\right) = \sum_{i=1}^{n} \left(\ln \lambda - \lambda X_i\right) = n \ln \lambda - \lambda \sum_{i=1}^{n} X_i.$

derivative:
$$\frac{\partial}{\partial \lambda} \ln f(X) = \frac{n}{\lambda} - \sum_{i=1}^{n} X_i = 0,$$

solution:
$$\hat{\lambda} = \frac{n}{\sum X_i} = \frac{1}{\bar{X}}.$$

Estimating the error of an estimate

estimator is a random variable and we wish to know how concentrated is this estimator value around the true value

Estimating the error of an estimate- example Poisson distribution

already we have obtained an estimator for λ : $\hat{\lambda} = \bar{X}$

Approach 1: $\sigma = \sqrt{\lambda}$ for the Poisson(λ)

so: $\sigma(\hat{\lambda}) = \sigma(\bar{X}) = \sigma/\sqrt{n} = \sqrt{\lambda/n},$

Thus:

$$s_1(\hat{\lambda}) = \sqrt{\frac{\bar{X}}{n}} = \frac{\sqrt{\sum X_i}}{n}.$$

Estimating the error of an estimate- example Poisson distribution

Approach 2: $\sigma(\bar{X}) = \sigma/\sqrt{n}$, so estimated by $s(\bar{X}) = s/\sqrt{n}$

so:
$$s_2(\hat{\lambda}) = \frac{s}{\sqrt{n}} = \sqrt{\frac{\sum (X_i - \bar{X})^2}{n(n-1)}}.$$

Confidence interval

An interval [a, b] is a $(1 - \alpha)100\%$ confidence interval for the parameter θ if it contains the parameter with probability $(1 - \alpha)$,

$$P\{a \le \theta \le b\} = 1 - \alpha.$$

The coverage probability $(1 - \alpha)$ is also called a confidence level.

Confidence interval for normal distribution

Confidence interval for normal distribution

Confidence interval – for unbiased estimator with normal distribution

after normalizing to Standard Normal distribution:

$$P\left\{-z_{\alpha/2} \leq \frac{\hat{\theta} - \theta}{\sigma(\hat{\theta})} \leq z_{\alpha/2}\right\} = 1 - \alpha.$$

$$P\left\{\hat{\theta} - z_{\alpha/2} \cdot \sigma(\hat{\theta}) \le \theta \le \hat{\theta} - z_{\alpha/2} \cdot \sigma(\hat{\theta})\right\} = 1 - \alpha.$$

Confidence interval [a,b] where:

$$a = \hat{\theta} - z_{\alpha/2} \cdot \sigma(\hat{\theta})$$
$$b = \hat{\theta} + z_{\alpha/2} \cdot \sigma(\hat{\theta})$$

Application: confidence level for a sample mean

when it applies:

- sum of random variables with normal distribution
- a large number of samples for any random variable due to CLT

Recall that:
$$\mathbf{E}(\bar{X}) = \mu$$

 $\sigma(\bar{X}) = \sigma/\sqrt{n}$

So the confidence interval with endpoints:

$$\bar{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Confidence interval for difference between two means:

Steps

- 1. estimator of mean value: $\hat{\theta} = \bar{X} \bar{Y}$ (it is unbiased)
- 2. if the sample is large, then approximately normal distribution
- 3. estimate variance:

$$\sigma(\hat{\theta}) = \sqrt{\operatorname{Var}\left(\bar{X} - \bar{Y}\right)} = \sqrt{\operatorname{Var}\left(\bar{X}\right) + \operatorname{Var}\left(\bar{Y}\right)} = \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}.$$

4. Confidence interval with endpoints:

$$\bar{X} - \bar{Y} \pm z_{\alpha/2} \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}$$

How big should be the sample size?

How big should be the sample size?

Confidence interval depends on sample size n:

margin =
$$z_{\alpha/2} \cdot \sigma / \sqrt{n}$$
.

So a simple rule:

In order to attain a margin of error Δ for estimating a population mean with a confidence level $(1 - \alpha)$,

a sample of size
$$n \ge \left(\frac{z_{\alpha/2} \cdot \sigma}{\Delta}\right)^2$$
 is required.

Confidence interval for unknown variance

Example: population with fraction p of objects with property A

Sample proportion:
$$\hat{p} = \frac{\text{number of sampled items from } A}{n}$$

So:

$$X_{i} = \begin{cases} 1 & \text{if } i \in A \\ 0 & \text{if } i \notin A \end{cases} \qquad \hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

$$\operatorname{Var}\left(\hat{p}\right) = \frac{p(1-p)}{n},$$

Finally:
$$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Problem of small sample size

CLT does not apply anymore .

Recall normalization (for normal distribution):

$$Z = \frac{\hat{\theta} - \mathbf{E}(\hat{\theta})}{\sigma(\hat{\theta})} = \frac{\hat{\theta} - \theta}{\sigma(\hat{\theta})},$$

For small sample we consider so called T-ratio:

$$t = rac{\hat{ heta} - heta}{s(\hat{ heta})}$$

Student's distribution

Introduced by W. Gosset (pseudonym Student):

for T-ratio:
$$t=rac{\hat{ heta}- heta}{s(\hat{ heta})}$$

computed for a sample of size *n* for random variable with normal distribution

Subtle issue: T-ratio is not normal (observe that denominator is also an estimator)

True distribution: Student's distribution with "*n-1* degrees of freedom"

Using Students distribution:

For each *n* there are precomputed values for any confidence interval – except that follow the same steps as for normal distribution

Example: difference between two variables with the same variance:

assumption:
$$\sigma_X^2 = \sigma_Y^2 = \sigma^2$$
.
sample variance: $s_p^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2 + \sum_{i=1}^m (Y_i - \bar{Y})^2}{n + m - 2} = \frac{(n - 1)s_X^2 + (m - 1)s_Y^2}{n + m - 2}$

confidence interval from Student's distribution:

$$\bar{X} - \bar{Y} \pm t_{\alpha/2} \, s_p \, \sqrt{\frac{1}{n} + \frac{1}{m}}$$

Example: difference between two variables with the different variance:

problem: not the Student distribution anymore! no compact and clean solution

Approximation (only to see):

1. computing "degree of freedom"

2. Proceed with formulas for Student's distribution with this degree

$$\bar{X} - \bar{Y} \pm t_{\alpha/2} \sqrt{\frac{s_X^2}{n} + \frac{s_Y^2}{m}}$$

Hypothesis testing

Population -- claimed property H0 -- alternative property H1 so that both cannot hold at the same time Case 1: Data from the whole population available:

one can say which of them is false

Case 2:

Only a sample available -- this is the most frequent case which of H0 and H1 is true, which is false??? medicine,

Example

H0= the proportion of defect chips is 3% H1 = the proportion of defect chips is >3%

Test outcomes

	Result of the test		
	Reject H_0	Accept H_0	
H_0 is true	Type I error	correct	
H_0 is false	correct	Type II error	

Example: biometric recognition, Al

Test outcomes

Example: biometric recognition

Significance level of a test

For type 1 error:

 $\alpha = \mathbf{P} \{ \text{reject } H_0 \mid H_0 \text{ is true} \}$

Power of the test

Alternative test H_A with parameters θ

 $p(\theta) = P \{ \text{reject } H_0 \mid \theta; H_A \text{ is true} \}.$

General approach

- H₀ corresponds to some distribution F₀
- define statistic T
- define acceptance and rejection regions so that probability of values from rejection regions is at most α

Significance level = P { Type I error } = P { Reject $| H_0$ } = P { $T \in \mathcal{R} | H_0$ } = α .

For normal distribution mean 0 – two sided Z test

(a) Two aided 7 test

Right tail alternative

(a) A level α test with a **right-tail alternative** should

$$\begin{cases} \text{reject } H_0 & \text{if } Z \ge z_\alpha \\ \text{accept } H_0 & \text{if } Z < z_\alpha \end{cases}$$

Left tail alternative

With a left-tail alternative, we should

Choosing α

Delicate issue, a tradeoff between errors of type 1 and 2

P-value

For a given observation which values of α force rejection of H₀ and which force acceptance of H₀?

P-value is the boundary between these regions of $\boldsymbol{\alpha}$

P-value

	For For	$\alpha < P,$ $\alpha > P,$	accept H_0 reject H_0
with a P-value	Practically,		
	If	P<0.01,	reject H_0
	If	P>0.1,	accept H_0

Confidence intervals and testing for the variance

Important for making decisions based on a sample:

-- system reliability

-- quality testing

.. no room in cyber-physical systems

Variance unbiased estimator

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

the values $(X_i - \bar{X})^2$ are not independent:

- \Box each X_i occurs in the sample mean
- □ CLT can be applied only for large *n*
- \Box distribution of s^2 is not even symmetric

Distribution of variance?

Assumption: X_1 , ..., X_n -- independent, normally distributed with variance σ

$$\frac{(n-1)s^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \bar{X}}{\sigma}\right)^2$$

is Chi-square with (n-1) degrees of freedom

Density:

$$f(x) = \frac{1}{2^{\nu/2} \Gamma(\nu/2)} x^{\nu/2 - 1} e^{-x/2}, \quad x > 0,$$

Chi-square distribution

A case of Gamma distribution:

$$Chi-square(\nu) = Gamma(\nu/2, 1/2),$$

Deriving from general formulas for Gamma distribution:

$$E(X) = \nu$$
 and $Var(X) = 2\nu$.

Chi-square distribution

FIGURE 9.12: Chi-square densities with $\nu = 1, 5, 10$, and 30 degrees of freedom. Each distribution is right-skewed. For large ν , it is approximately Normal.

Confidence interval

distribution not symmetrical, so the confidence interval is not of the form $s_{\pm \Delta}$

two values must be read from precomputed lookup tables

Confidence interval

Confidence interval for the variance

$$\left[\frac{(n-1)s^2}{\chi^2_{\alpha/2}}, \ \frac{(n-1)s^2}{\chi^2_{1-\alpha/2}}\right]$$