Metody probabilistyczne i statystyka, 2021 informatyka algorytmiczna, WIiT PWr 7-Statistical Inference 2

Testing a distribution

Problem:

How to check that a source A has probability distribution D?

So far we have been only learning unknown parameters while distribution was known.

This is a crucial question! E.g. in

- understanding social networks
- anomaly detection in cybersecurity

Testing a distribution

Goal: testing whether a source is distributed according to a hypothesis H0

Method:

- **u** split the population to N bins
- **u** count how many samples fall into each bin
- **Compute the expected value for each bin under H0**
- **Calculate statistics**
- make a decision

Statistics used:
$$\chi^2 = \sum_{k=1}^{N} \frac{\{Obs(k) - Exp(k)\}^2}{Exp(k)}.$$

Obs(k) = number of samples in bin k Exp(k) = expected number of samples in bin k

One sided statistics: low values for accepting H0 high value – for rejection

$$R = [\chi_{\alpha}^2, +\infty),$$

Chi Square background

Pearson's Theorem

χ^2 distribution for N bins converges to the chi-square distribution with N-1 degrees of freedom

Rule of thumb: each bin should contain at least 5 samples

Chi Square background

Chi Square application example

testing a die to be unbiased:

- □ 6 bins corresponding to 6 possible outcomes
- **90** samples
- **Exp(i)=90/6=15**
- **Counts observed: 20,15,12,17,9,17**
- **Given Statistics:**

$$\begin{split} \chi^2_{\rm obs} &= \sum_{k=1}^N \frac{\{Obs(k) - Exp(k)\}^2}{Exp(k)} \\ &= \frac{(20 - 15)^2}{15} + \frac{(15 - 15)^2}{15} + \frac{(12 - 15)^2}{15} + \frac{(17 - 15)^2}{15} + \frac{(9 - 15)^2}{15} + \frac{(17 - 15)^2}{15} = 5.2. \end{split}$$

Chi Square application example

interpretation

ν	α , the right-tail probability														
(d.f.)	.999	.995	.99	.975	.95	.90	.80		.20	.10	.05	.025	.01	.005	.001
1	0.00	0.00	0.00	0.00	0.00	0.02	0.06		1.64	2.71	3.84	5.02	6.63	7.88	10.8
2	0.00	0.01	0.02	0.05	0.10	0.21	0.45		3.22	4.61	5.99	7.38	9.21	10.6	13.8
3	0.02	0.07	0.11	0.22	0.35	0.58	1.01		4.64	6.25	7.81	9.35	11.3	12.8	16.3
4	0.09	0.21	0.30	0.48	0.71	1.06	1.65		5.99	7.78	9.49	11.1	13.3	14.9	18.5
5	0.21	0.41	0.55	0.83	1.15	1.61	2.34		7.29	9.24	11.1	12.8	15.1	16.7	20.5

Goal: test the hypothesis that two parameters of the sample are stochastically independent

Application: eliminating false claims about dependence example: eating cabbage influence cancer risk

- **\Box** split population A to some number of bins: A₀, A₁,..., A_k
- **u** split population B to some number of bins B₀, B₁,..., B_m
- **collect** samples
- calculate statistics based on a sample

	B_1	B_2		B_m	row total
A_1	n_{11}	n_{12}	• • •	n_{1m}	n_1 .
A_2	n_{21}	n_{22}	• • •	n_{2m}	n_2 .
	• • •	• • •	• • •		
A_k	n_{k1}	n_{k2}	• • •	n_{km}	n_k .
column total	$n_{\cdot 1}$	n2		nm	n = n

$$\widehat{P}\left\{x \in A_i \cap B_j\right\} = \frac{n_{ij}}{n}, \quad \widehat{P}\left\{x \in A_i\right\} = \sum_{j=1}^m \frac{n_{ij}}{n} = \frac{n_i}{n}, \quad \widehat{P}\left\{x \in B_j\right\} = \sum_{i=1}^k \frac{n_{ij}}{n} = \frac{n_{ij}}{n}.$$

$$\widehat{P}\left\{x \in A_i \cap B_j\right\} = \frac{n_{ij}}{n}, \quad \widehat{P}\left\{x \in A_i\right\} = \sum_{j=1}^m \frac{n_{ij}}{n} = \frac{n_i}{n}, \quad \widehat{P}\left\{x \in B_j\right\} = \sum_{i=1}^k \frac{n_{ij}}{n} = \frac{n_{ij}}{n}.$$

$$\widetilde{P}\left\{x \in A_i \cap B_j\right\} = \left(\frac{n_i}{n}\right) \left(\frac{n_j}{n}\right)$$

$$\widehat{\operatorname{Exp}}(i,j) = n\left(\frac{n_i}{n}\right)\left(\frac{n_{j}}{n}\right) = \frac{(n_i)(n_{j})}{n}$$

$$\chi_{\text{obs}}^2 = \sum_{i=1}^k \sum_{j=1}^m \frac{\left\{ Obs(i,j) - \widehat{Exp}(i,j) \right\}^2}{\widehat{Exp}(i,j)}.$$

$$\chi_{\text{obs}}^2 = \sum_{i=1}^k \sum_{j=1}^m \frac{\left\{ Obs(i,j) - \widehat{Exp}(i,j) \right\}^2}{\widehat{Exp}(i,j)}.$$

Number of degrees of freedom for Chi-square distribution:

$$km - (k + m - 1) = (k - 1)(m - 1)$$

motivation: k equations for computing n_i . m equations for computing $n_{\cdot j}$ but only m+k-1 independent

Problem: Given a sample:

we know how to estimate the variation of the population – estimator for variation

but how to estimate variation of this estimator?

Bootstrapping

Straightforward way: repeat sampling, get many values of the estimator and treat them as samples

Requires resampling many times!

Bootstrapping

solution by Bradley Efron, based on principle from a tale story about Baron Münchausen

applies for any function h computed for the population and calculated in the same way from a sample

Q example: variance, median

Problem with variance of variance estimator:

Computing it on the whole population is computationally infeasible

e.g.: for a population of 100 objects and sample of size 10 there are $\binom{100}{10} \approx +\infty$ cases

Bootstrapping method:

- 1. take a sample of size N: X_1 , ..., X_n
- 2. k times sample from X_1 , ..., X_n with replacement:

 $X_{ij}^* = \begin{cases} X_1 & \text{with probability } 1/n \\ X_2 & \text{with probability } 1/n \\ \dots & \dots & \dots \\ X_n & \text{with probability } 1/n \end{cases}$

and compute the estimator from the sample obtained

Bootstrapping **Example:**

Bootstrap samples $\mathcal{B}_1, \mathcal{B}_2, \ldots$

Bootstrapping

Example: variance of median variance estimator Small sample: 2,5,7, median 5

i	\mathcal{B}_i	\widehat{M}_i	i	\mathcal{B}_i	\widehat{M}_i	i	\mathcal{B}_i	\widehat{M}_i
1	(2, 2, 2)	2	10	(5, 2, 2)	2	19	(7, 2, 2)	2
2	(2, 2, 5)	2	11	(5, 2, 5)	5	20	(7, 2, 5)	5
3	(2, 2, 7)	2	12	(5, 2, 7)	5	21	(7, 2, 7)	7
4	(2, 5, 2)	2	13	(5, 5, 2)	5	22	(7, 5, 2)	5
5	(2, 5, 5)	5	14	(5, 5, 5)	5	23	(7, 5, 5)	5
6	(2, 5, 7)	5	15	(5, 5, 7)	5	24	(7, 5, 7)	7
7	(2, 7, 2)	2	16	(5, 7, 2)	5	25	(7, 7, 2)	7
8	(2, 7, 5)	5	17	(5, 7, 5)	5	26	(7, 7, 5)	7
9	(2, 7, 7)	7	18	(5, 7, 7)	7	27	(7, 7, 7)	7

Bootstrapping

Example: variance of median variance estimator Small sample: 2,5,7, median 5

$$\widehat{\operatorname{Var}}^{*}(\widehat{M}) = h(\mathcal{S}) = \sum_{x} x^{2} P^{*}(x) - \left(\sum_{x} x P^{*}(x)\right)^{2}$$

= $(4) \left(\frac{7}{27}\right) + (25) \left(\frac{13}{27}\right) + (49) \left(\frac{7}{27}\right) - \left\{(2) \left(\frac{7}{27}\right) + (5) \left(\frac{13}{27}\right) + (7) \left(\frac{7}{27}\right)\right\}^{2}$
= $\underline{3.303}.$