Probability and statistics, 2021, Computer Science Algorithmics, Undergraduate Course, Part II, lecturer: Mirosław Kutyłowski

I. Generating Random Numbers for a given probability distribution

Chapter 5.2 in Byron

Goal:

- simulations (e.g., pharma industry, weather forecast, system testing ...)

Weather simulations:

Simulations for new chemical products, pharmaceuticals:

Physical sources: examples:

1) Electronics (bistable)

3) quantum generators

3) noise

Problems of physical sources:

1) bias

2) memory: dependence on history

3) external influence

deterministic random number generators:

DRNG: NIST, recommendations,

architecture: PRNG(seed) yields: bits

DRNG:

basic property: not distinguishable from coin flipping

what does it mean?:

NIST tests

left-or-right game

secure PRNG:

unpredictability forwards:

backwards:

realizations:

families of PRNG (based on residual arithmetic and algebraic expressions

$$
a \cdot x^2 + b \cdot x + c \bmod p
$$

cryptographic generators: e.g. based on encryption

trunc(32,EncK(1)), trunc(32,EncK(2)), . . .

Problem: domain

We have a good generator for uniform distribution over n bit numbers

How to get a uniform distribution over integers in the range [0,q)?

Problem: uniform versus non-uniform distribution

all good PRNG resources deliver the output that is uniform over some interval e.g.: 32 bit nonnegative integers

Needed: e.g. geometric distribution, Poisson, ...

single Bernoulli trial:

procedure:

- **1. choose u uniformly at random in [0,1]**
- **2. if u<p then output 0 else output 1**

n Bernoulli trials, number of successes:

n times: 0: with probability p 1: with probability 1-p count the number of successes

stupid solution: compute pbb according to formulas

...

n Bernoulli trials, number of successes:

n times: 0: with probability p 1: with probability 1-p count the number of successes

```
procedure (in MATLAB):
n=20; p=0.34;
U=rand(n,1);
X=sum(U<p)
```
geometric distribution:

Bernoulli trials with pbb p of 0 output: the number of trials until 1 chosen

naive way: take mathematical formulas and then choose according to the probabilities

```
procedure (in MATLAB):
X=1;
while rand<p
X=X+1;
end;
X
```
arbitrary discrete distribution:

assume: n possible values, p(i) -probability of the ith value

approach: for each i=<n compute

$$
a_i = \sum_{j < i} p_j
$$

the results saved in a data structure D

procedure:

- **1. u=random;**
- **2.** with D find i such that $a_i \leq u \leq a_{i+1}$

Poisson distribution:

Mat

```
lambda = 5;% Parameter
 = rand;
                        % Generated Uniform variable
U
i = 0;% Initial value
F = exp(-\lambda); % Initial value, F(0)while (U \ge F);
             % The loop ends when U < F(i)F = F + exp(-lambda) * lambda' i/gamma(i+1);i = i + 1:
end;
X = i
```
the case of invertible CDF

Theorem 2 Let X be a continuous random variable with cdf $F_X(x)$. Define a random variable $U = F_X(X)$. The distribution of U is Uniform(0,1).

PROOF: First, we notice that $0 \leq F(x) \leq 1$ for all x, therefore, values of U lie in [0, 1]. Second, for any $u \in [0,1]$, find the cdf of U,

$$
F_U(u) = P\{U \le u\}
$$

\n
$$
= P\{F_X(X) \le u\}
$$

\n
$$
= P\{X \le F_X^{-1}(u)\}
$$
 (solve the inequality for X)
\n
$$
= F_X(F_X^{-1}(u))
$$
 (by definition of cdf)
\n
$$
= u
$$
 (F_X and F_X⁻¹ cancel)

the case of invertible CDF - continuous distribution X

Procedure: 1. choose u uniformly at random in [0,1]

2. take $x:=f^{-1}_Y(u)$

Example

Exponential distribution $F(x) = 1-e^{-\lambda x}$

Procedure: 1. choose ^u uniformly at random in [0,1]

2. solve u= 1-e λx that is 1-u= ^e λx $\ln(1-u) = \lambda x$ $x = \ln(1-u)/\lambda$

Or simply $x = ln(u)/\lambda$

Example –warning

Gamma distribution has complicated density function

$$
F(t) = \int_0^t f(x)dx = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \int_0^t x^{\alpha-1} e^{-\lambda x} dx.
$$

Inverting F ?

Workaround:

a random variable with Gamma distribution α is is a sum of α independent random variables with exponential distribution

the case of invertible CDF - discrete distribution X

Procedure:

1. choose u uniformly at random in [0,1]

2. take

$$
x:=min\{x: F(x)>u\}
$$

so: $x = F^{-\frac{1}{2}}(u)$

Example: geometric distribution

$$
F(x) = 1 - (1 - p)^x
$$

Procedure: Find the smallest ^x such that

$$
1 - (1 - p)^x > U
$$

Solution:

$$
X = \left\lceil \frac{\ln(1-U)}{\ln(1-p)} \right\rceil.
$$

Rejection method:

- **1. sample X and Y uniformly at random**
- **2. if Y>f(X), then goto 1**
- **3. Output X**

Reject a point Ω \boldsymbol{a}

 \boldsymbol{c}

Pict. from Byron

then density of $X = f(X)$!

Application:

distributions where density is computable (e.g. Beta distribution)

$$
f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} \text{ for } 0 \le x \le 1.
$$

but computing cdf is hard (numeric computations of the integral)

Poisson distribution

An example of a clever approach tailored to the particular case

$$
P(x) = e^{-\lambda} \frac{\lambda^x}{x!}, \ x = 0, 1, 2, \dots
$$

but.. also can be understood as the number of rare events in an interval of time, where the time between events is exponential

Pragmatic computation:

- 1. Obtain Uniform variables U_1, U_2, \ldots from a random number generator.
- 2. Compute Exponential variables $T_i = -\frac{1}{\lambda} \ln(U_i)$.
- 3. Let $X = \max\{k : T_1 + \ldots + T_k \leq 1\}.$