Login: student

Password: prawdo22

Probability and statistics, 2021, Computer Science Algorithmics, Undergraduate Course, Part II, lecturer: Mirosław Kutyłowski

I. Generating Random Numbers for a given probability distribution

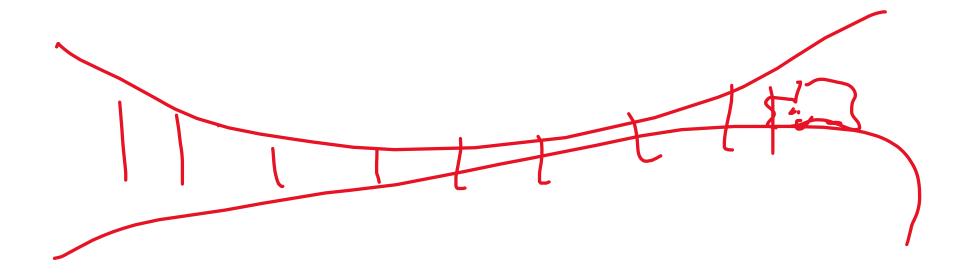
Chapter: 5.2 from Byron

goal:
simulations (e.g. pharma industry, weather forcast, system testing ...)

Weather simulations:

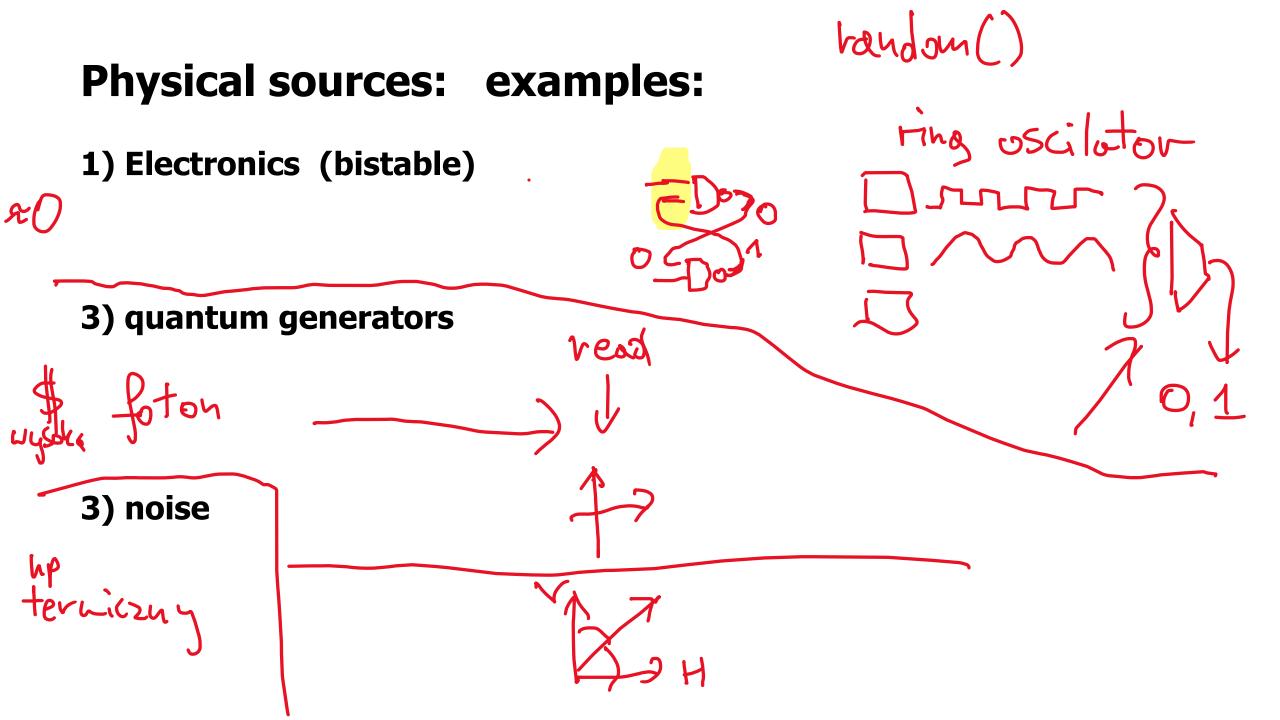
Stava metoda: modelowanie (012/P 1011 hP ک 0 0 Model: fluttrace ZTorony loson, places

Modelling behavior of a bridge:



The traffic on the bridge is a random proces: we need to generate these random events

Simulations for new chemical products, pharmaceuticals:



Problems of physical sources:

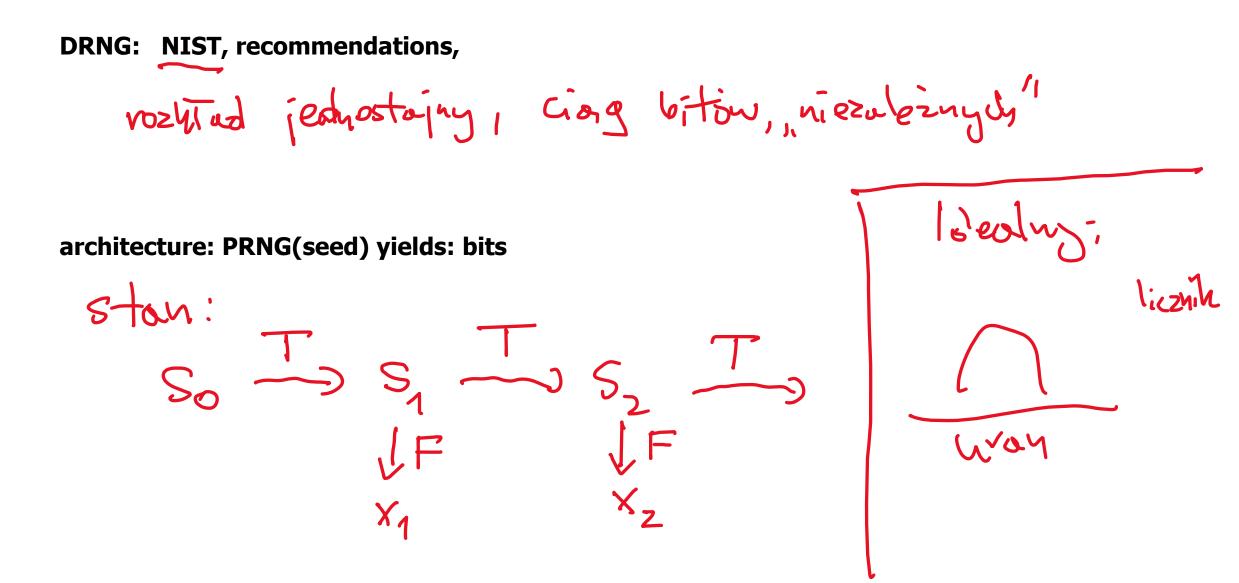
2) memory: dependence on history

ogrammenta no castasi problamania

3) external influence

gerebonnie loson go hasta oupt presidents

deterministic random number generators:



DRNG: basic property: not distinguishable from coin flipping

what does it mean?:

NIST tests kompromis! Sybhie i n miarg Shutecene

generator

A. DRNG

mica moneto,

0

w srodhen dinozenv

B:

left-or-right game

secure PRNG: unpredictability

forwards: nie mogg zgodnoji Znajoc X1, Xy Xy+1 × n+21 --backwards: szyfronanie rozniow telefonicznych: podstuchan rozmona: Mxor S pozniej chuila milizenia: 0-0 XOR S, atahujory: zna S' obrytuje Ma podstanie s' ciag s obrytuje M < tak me powimo

realizations:

families of PRNG (based on residual arithmetic and algebraic expressions

a,b-parametr

 $a \cdot x^2 + b \cdot x + c \mod p$

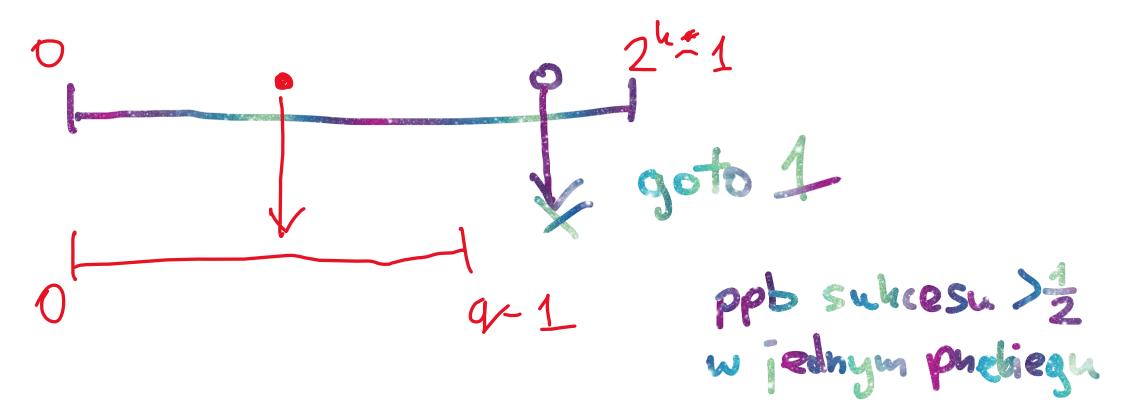
cryptographic generators: e.g. based on encryption

trunc(32, Enck(1)), trunc(32, Enck(2)), ... bordzo efektywne gdy many np. hordware'dre wsparcie dle syfronxinia *P:: AES

Problem: domain

We have a good generator for uniform distribution over n bit numbers

How to get a uniform distribution over integers in the range [0, q]?



Problem: uniform versus non-uniform distribution

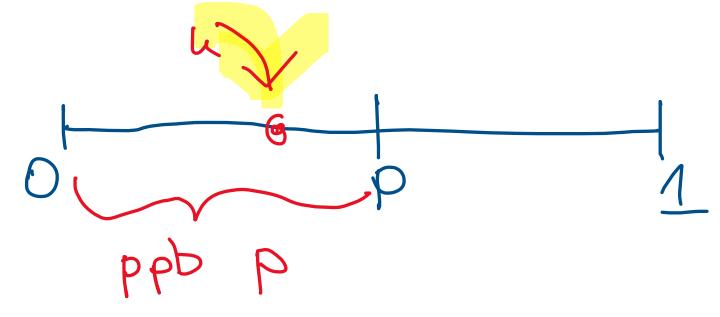
all good PRNG resources deliver the output that is uniform over some interval e.g.: 32 bit nonnegative integers

Needed: e.g. geometric distribution, Poisson, ...

single Bernoulli trial:

procedure:

- 1. choose *u* uniformly at random in [0,1]
- 2. if u<p then output 0 else output 1



1 bit: 0 z ppb JP 1 z ppb 1-p

n Bernoulli trials, number of successes:

n times:

0: with probability *p* 1: with probability 1-*p* count the number of successes

n Bernoulli trials, number of successes:

n times: 0: with probability p 1: with probability 1-p count the number of successes

Summing over the whole we have

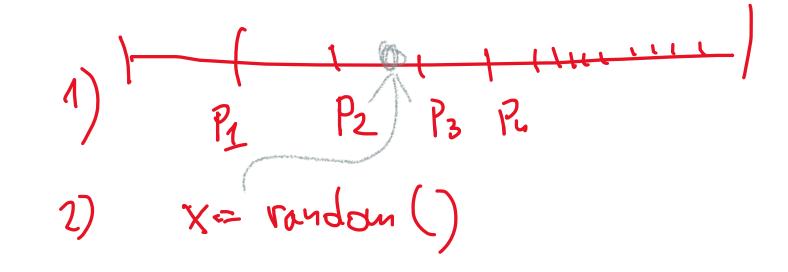
Matlab works on matrices. The function rond(n, 1) generates e matrix n×1 with random elements from [0,1)

geometric distribution:

Bernoulli trials with pbb *p* of 0 output: the number of trials until 1 chosen

naive way: take mathematical formulas and then choose according to the probabilities

procedure (in MATLAB):
X=1;
while rand



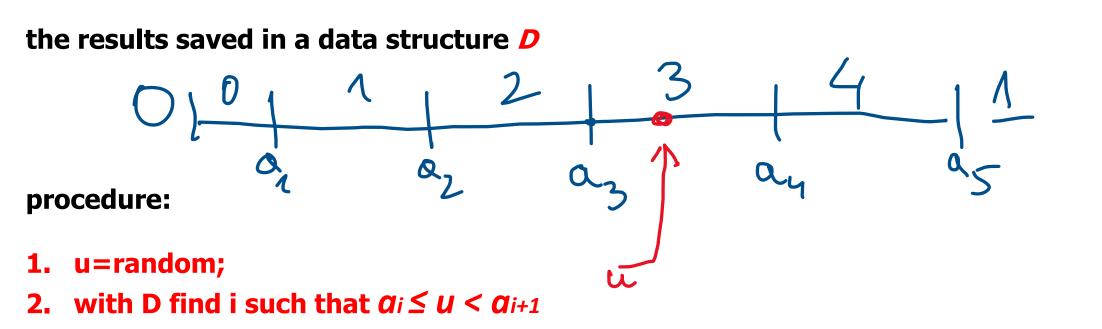
arbitrary discrete distribution:

assume: *n* possible values, *p(i)* -probability of the ith value

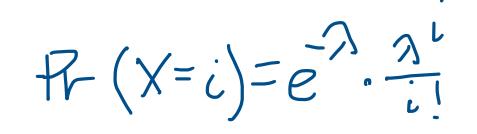
approach: for each *i* ≤ *n* compute

$$a_i = \sum_{j < i} p_j$$

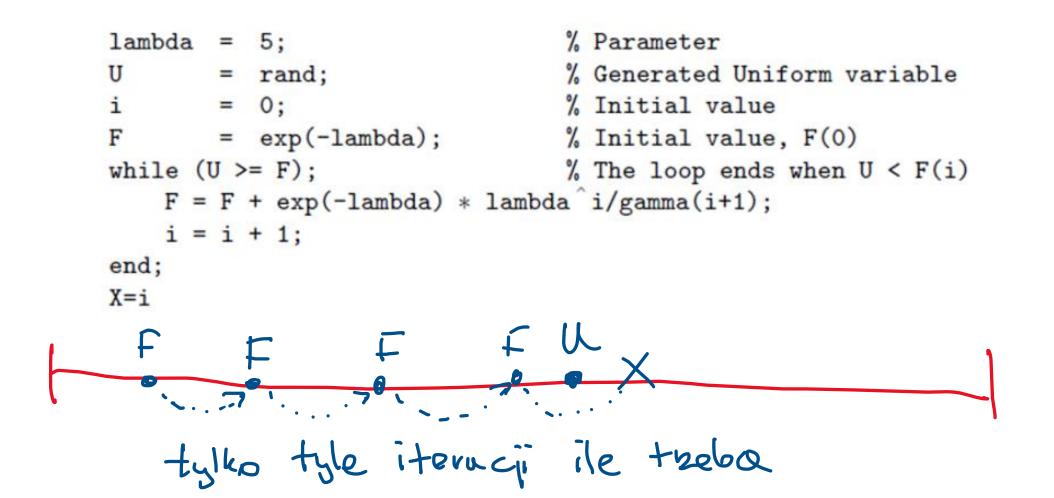
 $a_{3} = ppb(0) + ppb(1) + ppb(2)$



Poisson distribution:



Matlab program from Byron:



Theorem 2 Let X be a continuous random variable with cdf $F_X(x)$. Define a random variable $U = F_X(X)$. The distribution of U is Uniform(0,1).

PROOF: First, we notice that $0 \le F(x) \le 1$ for all x, therefore, values of U lie in [0, 1]. Second, for any $u \in [0, 1]$, find the cdf of U,

$$F_{U}(u) = P \{U \le u\}$$

$$= P \{F_{X}(X) \le u\}$$

$$= P \{X \le F_{X}^{-1}(u)\} \quad \text{(solve the inequality for } X\text{)}$$

$$= F_{X}(F_{X}^{-1}(u)) \quad \text{(by definition of cdf)}$$

$$= u \quad (F_{X} \text{ and } F_{X}^{-1} \text{ cancel})$$