Probability and statistics, 2021, Computer Science Algorithmics, Undergraduate Course, Part II, lecturer: Mirosław Kutyłowski

I. Generating Random Numbers for a given probability distribution

Chapter 5.2 in Byron

goal:

- simulations (e.g., pharma industry, weather forecast, system testing ...)

the case of invertible CDF

Theorem 2 Let X be a continuous random variable with cdf $F_X(x)$. Define a random variable $U = F_X(X)$. The distribution of U is Uniform(0,1).

PROOF: First, we notice that $0 \leq F(x) \leq 1$ for all x, therefore, values of U lie in [0, 1]. Second, for any $u \in [0,1]$, find the cdf of U,

$$
F_U(u) = P\{U \le u\}
$$

\n
$$
= P\{F_X(X) \le u\}
$$

\n
$$
= P\{X \le F_X^{-1}(u)\}
$$
 (solve the inequality for X)
\n
$$
= F_X(F_X^{-1}(u))
$$
 (by definition of cdf)
\n
$$
= u
$$
 (F_X and F_X⁻¹ cancel)

the case of invertible CDF - continuous distribution X

Procedure: 1. choose u uniformly at random in [0,1]

Exponential distribution $F(x) = 1-e^{-\lambda x}$

Example –warning

Gamma distribution has complicated density function

$$
F(t) = \int_0^t f(x)dx = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \int_0^t x^{\alpha-1} e^{-\lambda x} dx.
$$

Inverting F ?

Workaround: a random variable with Gamma distribution α is is a sum of α independent random variables with exponential distribution

the case of invertible CDF - discrete distribution X

Procedure:

- **1. choose u uniformly at random in [0,1]**
- **2. take**

$$
\begin{cases}\nx := \min \{x : F(x) > u\} \\
\text{so: } x = -\frac{1}{u}(u)\n\end{cases}
$$

Example: geometric distribution

Pict. from Byron

Zmienn losoma $F_{a,b}$

Application:

distributions where density is computable (e.g. Beta distribution)

$$
f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} \text{ for } 0 \le x \le 1.
$$

but computing cdf is hard (numeric computations of the integral)

Poisson distribution

An example of a clever approach tailored to the particular case

$$
P(x) = e^{-\lambda} \frac{\lambda^x}{x!}, \ x = 0, 1, 2, \dots
$$

but.. also can be understood as the number of rare events in an interval of time, where the time between events is exponential

Pragmatic computation:

- 1. Obtain Uniform variables U_1, U_2, \ldots from a random number generator.
- 2. Compute Exponential variables $T_i = -\frac{1}{\lambda} \ln(U_i)$.
- 3. Let $X = \max\{k : T_1 + \ldots + T_k \leq 1\}.$