Probability and statistics, 2022, Computer Science Algorithmics,
Undergraduate Course, Part I, lecturer: Mirostaw Kutytowski

2. Monte Carlo methods



Computing it on a desert:
Option 1: use Taylor series

Option 2: random experiment



General situation

J a subset A of all values of a random variable X,
1 what is the probability p that X falls into A?

We run n independent experiments and get n values of X
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How good it is this method?

We need guarantees like:

"the probability that lp P| >d
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To simplify the computation we can work on normal distribution:
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For normal distribution:
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problem: we do not know p to perform this computation



A solution:

1) calculations for an intelligent guess for p

2) taking the worst possible p :
make p(1-p) as big as possible (it happens for p=0.5)
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A solution:

approach 1:

approach 2:




Finally:

approach 1:

approach 2:




Why we approximate by Normal distribution? Why it leads to
reasonable results?

This is a very frequent approach in many situations!



Central Limit Theorem : behavior of the sum of independent
random variables:
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expectation, location parameter
standard deviation, scale parameter
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Theorem 1 (CENTRAL LimiT THEOREM) Let Xy, X3, ... be independent mandom variables
with the same erpectation p = E(X;) and the same standard deviation o = Std(X;), and
let

Sp = i: Xi=Xi1+...+ X,
i=]

As n — nc. the standardized sum
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converges in distribution to a Standard Normal random variable, that is,
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for all z.




Important properties:

-it does not matter which probability distribution has X
the result is always the normal distribution

- convergence is strong: "in probability"



Important properties:

Proof: there are elementary ones but ... an elegant and really convincing argument is
the one with generating functions

idea: transformation to a strange form of a power series where:

-- the first coefficient is zero (as the expected value of normalized X is 0)
-- the 2nd coefficient does not disappear and is normalized

-- the higher coefficients converge to 0 with N

-- for normal distribution, everything disappears right away



Estimating means and standard deviations:

* CLT: when computing the sum of iid random variables then the result
converges to normal distribution

 However: the parameters of normal distribution depend on Expectation
and Variance:

X = i (X1 +...+Xn)
B(X) = itmm + EXy) = —(Nu) = 4, and
_ B * N
Var(X) = Nz (VarX; +...+ VarXy) = j—,{T “) = N

2-Monte Carlo



Expected value:
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So we have an unbiased estimator

2-Monte Carlo



Variance:

The situation is more complicated:
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But we need to compute variance VarX, ...
Impossible, since we have only an estimator for the expected value

Solution (to be explained later) -- an unbiased estimator:
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2-Monte Carlo



Estimating volume:

Naive approach: take grid points and check how many of them fall into a set A

Problem cases:

2-Monte Carlo



(Very) Complicated cases:

Spaces where alone finding the elements as well as finding random elements
is hard

Example: maximal matchings in a graph G that contain an edge (u,v)

2-Monte Carlo



General approach:

1. N random variables, Y(i) is an element of the space chosen with uniform
probability
2. X(i)=1iff Y(i) belongs to A, otherwise X(i)=0

Volume of A = E| % (X;+...+Xn) ]
Easier than interpretation of a picture | ", )
and drawing boundaries: ' o ° oo
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2-Monte Carlo



Monte Carlo integration:

N = 1000; % Number of simulations
U = rand(N,1); h (U,V) is a random point
V = rand(N,1); /» in the bounding box

I = mean( V < g(U) ) 7 Estimator of integral I

A
Accuracy:
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2-Monte Carlo



Monte Carlo integration - improved:

N = 1000; % Number of simulations

Z = randn(N,1); % Standard Normal variables
f = 1/sqrt(2*Pi) * exp(-Z."2/2); 7’ Standard Normal density
Iest = mean( g(2)./f(Z) ) %y Estimator of fj;g[r}dr

2-Monte Carlo



Accuracy:

choose f such that g(X)/f(X) is nearly constant
then variance of a random variable R=g(X)/f(X) is small

- so the average has smaller variation as well

For f=1

1
0’ = VarR = Varg(X) = E¢*(X) — Eg(X) = [ g (z)de —IT° <T-T°%,
J 0

g <gfor0<g<1.

2-Monte Carlo,



