Probability and statistics, 2022, Computer Science Algorithmics, Undergraduate Course, Part II, lecturer: Mirosław Kutyłowski

2. Monte Carlo methods

Computing π on a desert:

Option 1: use Taylor series

Option 2: random experiment

General situation

❑ **a subset** *A* **of all values of a random variable** *X***,** ❑ **what is the probability** *p* **that** *X* **falls into** *A***?**

We run *n* **independent experiments and get** *n* **values of** *X*

Estimation:
$$
\hat{p} = \hat{P} \{X \in A\} = \frac{\text{number of } X_1, \dots, X_N \in A}{N},
$$

$$
\mathbf{E}(\hat{p}) = \frac{1}{N} (Np) = p, \text{ and}
$$

\n
$$
\text{Std}(\hat{p}) = \frac{1}{N} \sqrt{Np(1-p)} = \sqrt{\frac{p(1-p)}{N}}.
$$

How good it is this method?

We need guarantees like:

"the probability that is at most \mathcal{E}

$$
|\mathsf{p-}\widehat{\mathsf{p}}| > \mathsf{f}
$$

To simplify the computation we can work on normal distribution:

$$
\frac{N\hat{p} - Np}{\sqrt{Np(1-p)}} = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{N}}} \approx \text{Normal}(0, 1),
$$

For normal distribution:

$$
P\left\{|\hat{p}-p|>\varepsilon\right\}=P\left\{\frac{|\hat{p}-p|}{\sqrt{\frac{p(1-p)}{N}}}> \frac{\varepsilon}{\sqrt{\frac{p(1-p)}{N}}}\right\}\approx 2\Phi\left(-\frac{\varepsilon\sqrt{N}}{\sqrt{p(1-p)}}\right).
$$

$$
\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz
$$
, Standard Normal cdf

problem: we do not know p to perform this computation

A solution:

1) calculations for an intelligent guess for *p*

2)taking the worst possible *p* **: make** $p(1-p)$ **as big as possible (it happens for** $p=0.5$ **)**

A solution:

approach 1:

$$
2\Phi\left(-\frac{\varepsilon\sqrt{N}}{\sqrt{p^*(1-p^*)}}\right)\leq\alpha
$$

approach 2:

$$
2\Phi\left(-2\varepsilon\sqrt{N}\right)\leq\alpha
$$

Finally:

$$
N \ge p^*(1-p^*)\left(\frac{z_{\alpha/2}}{\varepsilon}\right)^2
$$

approach 2:

approach 1:

$$
N \ge 0.25 \left(\frac{z_{\alpha/2}}{\varepsilon}\right)^2
$$

Why we approximate by Normal distribution? Why it leads to reasonable results?

This is a very frequent approach in many situations!

Central Limit Theorem : behavior of the sum of independent random variables:

$$
S_n = X_1 + \dots + X_n,
$$

Let $\mu = \mathbf{E}(X_i)$ and $\sigma = \text{Std}(X_i)$ for all $i = 1, \dots, n$.

$$
Var(S_n) = n\sigma^2 \to \infty,
$$

$$
Var(S_n/n) = Var(S_n)/n^2 = n\sigma^2/n^2 = \sigma^2/n \to 0,
$$

$$
\mu = \text{expectation, location parameter}
$$
\n
$$
\sigma = \text{standard deviation, scale parameter}
$$
\n
$$
f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{\frac{-(x-\mu)^2}{2\sigma^2}\right\}, -\infty < x < \infty
$$
\n
$$
\mathbf{E}(X) = \mu
$$
\n
$$
\text{Var}(X) = \sigma^2
$$

Theorem 1 (CENTRAL LIMIT THEOREM) Let X_1, X_2, \ldots be independent random variables with the same expectation $\mu = \mathbf{E}(X_i)$ and the same standard deviation $\sigma = \text{Std}(X_i)$, and let **With**

$$
S_n = \sum_{i=1}^n X_i = X_1 + \ldots + X_n.
$$

As $n \to \infty$, the standardized sum

$$
Z_n = \frac{S_n - \mathbf{E}(S_n)}{\text{Std}(S_n)} = \frac{S_n - n\mu}{\sigma\sqrt{n}}
$$

converges in distribution to a Standard Normal random variable, that is,

$$
F_{Z_n}(z) = \mathbf{P}\left\{\frac{S_n - n\mu}{\sigma\sqrt{n}} \le z\right\} \to \Phi(z) \tag{4.18}
$$

for all z .

Important properties:

- it does not matter which probability distribution has X the result is always the normal distribution

- convergence is strong: "in probability"

Important properties:

Proof: there are elementary ones but ... an elegant and really convincing argument is the one with generating functions

idea: transformation to a strange form of a power series where:

-- the first coefficient is zero (as the expected value of normalized X is 0)

- **-- the 2nd coefficient does not disappear and is normalized**
- **-- the higher coefficients converge to 0 with N**

-- for normal distribution, everything disappears right away

Estimating means and standard deviations:

- **CLT: when computing the sum of iid random variables then the result converges to normal distribution**
- **However: the parameters of normal distribution depend on Expectation and Variance:**

$$
\bar{X} = \frac{1}{N} (X_1 + \ldots + X_N)
$$

$$
\mathbf{E}(\bar{X}) = \frac{1}{N} (\mathbf{E}X_1 + ... + \mathbf{E}X_N) = \frac{1}{N}(N\mu) = \mu, \text{ and}
$$

$$
\text{Var}(\bar{X}) = \frac{1}{N^2} (\text{Var}X_1 + ... + \text{Var}X_N) = \frac{1}{N^2}(N\sigma^2) = \frac{\sigma^2}{N}.
$$

Expected value:

$$
\bar{X} = \frac{1}{N} (X_1 + \ldots + X_N) \qquad \mathbf{E}(\bar{X}) = \mu.
$$

So we have an *unbiased estimator*

Variance:

The situation is more complicated:

$$
Var(\bar{X}) = \frac{1}{N^2}(Var X_1 + ... + Var X_N) = \frac{1}{N^2}(N\sigma^2) = \frac{\sigma^2}{N}.
$$

But we need to compute variance $Var X_1$, ...

Impossible, since we have only an estimator for the expected value

Solution (to be explained later) -- an unbiased estimator:

$$
s^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (X_{i} - \bar{X})^{2}
$$

2-Monte Carlo

Estimating volume:

Naïve approach: take grid points and check how many of them fall into a set A

Problem cases:

(Very) Complicated cases:

Spaces where alone finding the elements as well as finding random elements is hard

Example: maximal matchings in a graph G that contain an edge (u,v)

General approach:

- **1. N random variables, Y(i) is an element of the space chosen with uniform probability**
- **2. X(i)=1 iff Y(i) belongs to A, otherwise X(i)=0**

Volume of A = E[$\frac{1}{N}(X_1 + ... + X_N)$]

Easier than interpretation of a picture and drawing boundaries:

Monte Carlo integration:

- $= 1000;$ N
- U
-
- % Number of simulations
- $= \text{rand}(N,1);$ % (U,V) is a random point
- $V = rand(N,1);$ % in the bounding box
- I = mean($V < g(U)$) % Estimator of integral I

$$
\operatorname{Std}\left(\hat{\mathcal{I}}\right) = \sqrt{\frac{\mathcal{I}(1-\mathcal{I})}{N}}
$$

2-Monte Carlo

Monte Carlo integration - improved:

$$
\mathcal{I} = \int_{a}^{b} g(x)dx = \int_{a}^{b} \frac{g(x)}{f(x)} f(x) dx = \mathbf{E}\left(\frac{g(X)}{f(X)}\right)
$$

 $N = 1000;$ $Z = \text{randn}(N, 1);$ $f = 1/sqrt(2*Pi) * exp(-Z.^2/2);$ Lest = mean($g(Z)$./f(Z)) % Estimator of $\int_{-\infty}^{\infty} g(x) dx$

% Number of simulations % Standard Normal variables % Standard Normal density

Accuracy:

choose f such that g(X)/f(X) is nearly constant then variance of a random variable R=g(X)/f(X) is small

→ so the average has smaller variation as well

For f=1

$$
\sigma^2 = \text{Var}\,R = \text{Var}\,g(X) = \mathbf{E}g^2(X) - \mathbf{E}^2g(X) = \int_0^1 g^2(x)dx - \mathcal{I}^2 \le \mathcal{I} - \mathcal{I}^2,
$$

$$
\int_0^1 g^2(x)dx - \mathcal{I}^2 \le \mathcal{I} - \mathcal{I}^2,
$$

$$
g^2 \le g \text{ for } 0 \le g \le 1.
$$