Probability and statistics, 2022, Computer Science Algorithmics, Undergraduate Course, Part II, lecturer: Mirosław Kutyłowski

3- Stochastic Processes

Stochastic process

• Time dependent random variables: time+space

```
• time: (2, 3, 4, -1)
+ \in (0, +\infty)
```

space: Ω

• state: $X(t,\omega)$ where $t \in Time$, $\omega \in \Omega$

Examples:

• Trajectory of a particle

Noise

• Rain

• Messages in a communication bus

Examples:

CPU usage

• microcontrollers power consumption

1 Discrete time process

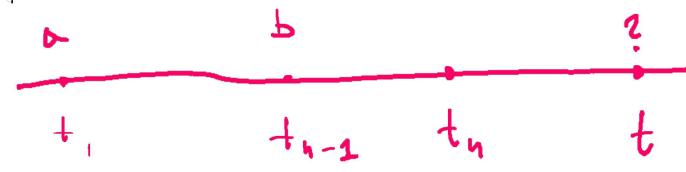
2 Continuous time process

Markov process

only the most recent state counts

Stochastic process X(t) is Markov if for any $t_1 < ... < t_n < t$ and any sets $A; A_1, ..., A_n$

$$P\{X(t) \in A \mid X(t_1) \in A_1, \dots, X(t_n) \in A_n\} = P\{X(t) \in A \mid X(t_n) \in A_n\}.$$
(6.1)



Markov chain

- discrete Markov process
- the state at time t+1 depends only on the state at time t

$$p_{ij}(t) = P \{X(t+1) = j \mid X(t) = i\}$$

= $P \{X(t+1) = j \mid X(t) = i, X(t-1) = h, X(t-2) = g, ...\}$

Transition probability:

$$p_{ij}^{(C)}(t) = P\{X(t+1) = j \mid X(t) = i\}$$

Homogenous Markov chain

Transition pbb does not depend on the time

• Transition matrix

$$\begin{pmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{pmatrix}$$

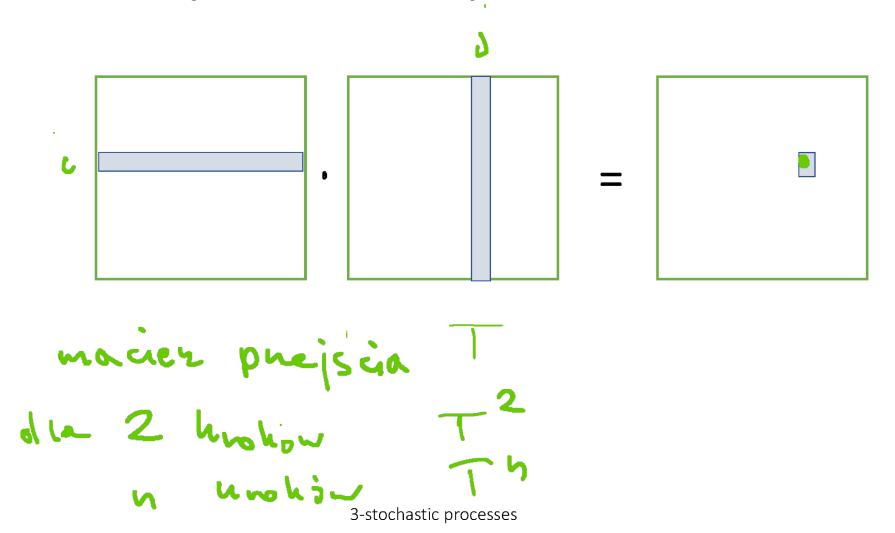
Transition in 2 steps

$$p_{ij}^{(2)} = P\{X(2) = j \mid X(0) = i\}$$

$$= \sum_{k=1}^{n} P\{X(1) = k \mid X(0) = i\} \cdot P\{X(2) = j \mid X(1) = k\}$$

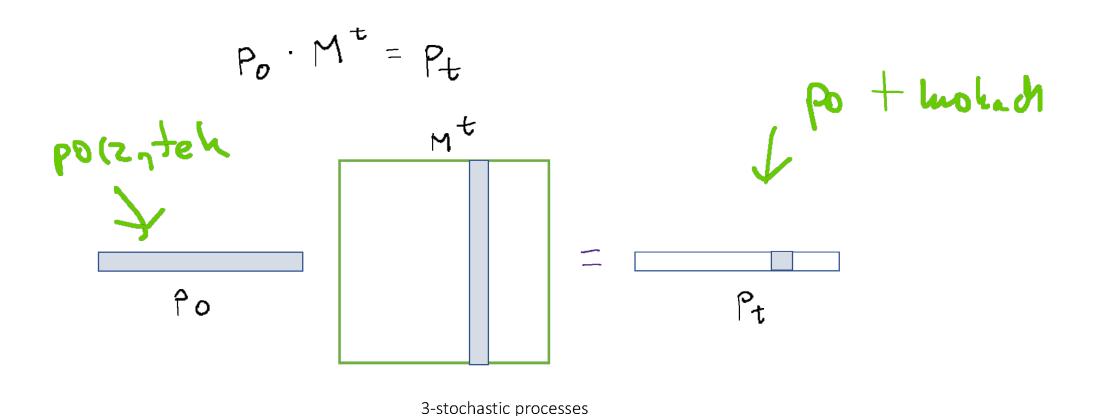
$$= \sum_{k=1}^{n} p_{ik} p_{kj} = (p_{i1}, \dots, p_{in}) \begin{pmatrix} p_{1j} \\ \vdots \\ p_{nj} \end{pmatrix}.$$

Transition pbb in two steps

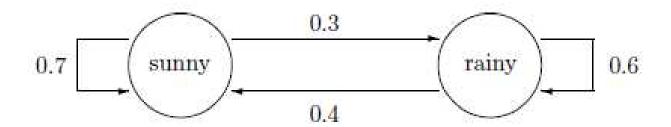


Probabilities at time t

• Transition matrix M of a homogenous chain

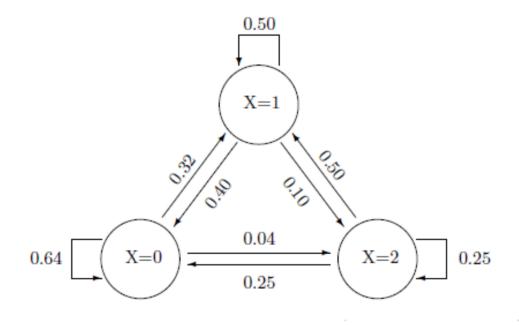


Description via a Transition diagram



Transition diagram

2 users: active user disconnects with pbb 0.5 inactive user connects with ppb 0.2 X= number of active users



Steady state distribution

"eventually it does not depend on the initial state"

A collection of limiting probabilities

$$\pi_x = \lim_{h \to \infty} P_h(x)$$

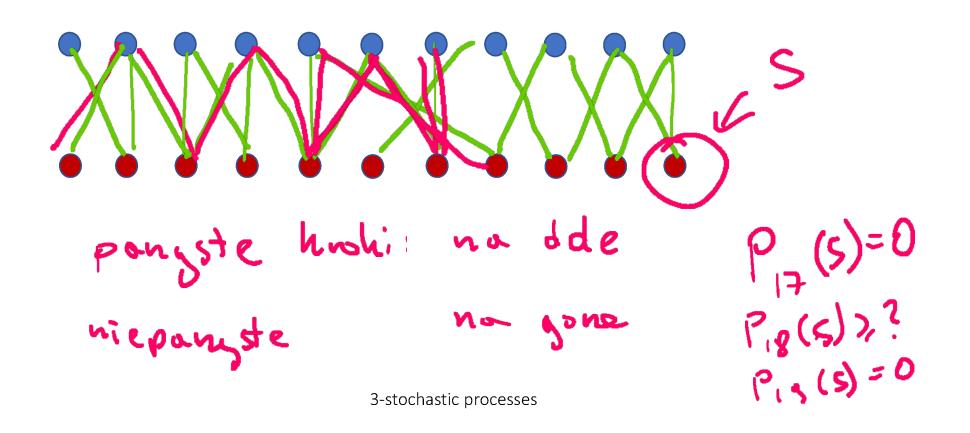
is called a steady-state distribution of a Markov chain X(t).

It is not clear in advance that a steady-state distribution exists

Another name used: stationary distribution

Example: no steady state distribution

random walk in a bipartite graph



Computing steady state distribution

$$P_h P = P_0 P^h P = P_0 P^{h+1} = P_{h+1}.$$

$$\pi P = \pi$$
.

$$(\pi_0 \pi_1) \begin{pmatrix} \pi_1 \\ 5 \end{pmatrix} \begin{pmatrix} \pi_1 \\ 5 \end{pmatrix} \begin{pmatrix} \pi_1 \\ 5 \end{pmatrix}$$

this is a system of linear equations. Moreover:

$$\sum_{i} = 1$$

(the probabilities must sum up to 1)

Weather example cnt

$$(\pi_1, \ \pi_2) = (\pi_1, \ \pi_2) \begin{pmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{pmatrix} = (0.7\pi_1 + 0.4\pi_2, \ 0.3\pi_1 + 0.6\pi_2).$$

$$\begin{cases} 0.7\pi_1 + 0.4\pi_2 &= \pi_1 \\ 0.3\pi_1 + 0.6\pi_2 &= \pi_2 \end{cases} \Leftrightarrow \begin{cases} 0.4\pi_2 &= 0.3\pi_1 \\ 0.3\pi_1 &= 0.4\pi_2 \end{cases} \Leftrightarrow \pi_2 = \frac{3}{4}\pi_1.$$

$$\pi_1 + \pi_2 = \pi_1 + \frac{3}{4}\pi_1 = \frac{7}{4}\pi_1 = 1,$$

$$\pi_1 = 4/7$$
 and $\pi_2 = 3/7$