Probability and statistics, 2022, Computer Science Algorithmics, Undergraduate Course, Part II, lecturer: Mirosław Kutyłowski

3- Stochastic Processes

Stochastic process

- **Time dependent random variables : time+space**
	- time: 1, 2, 3, 4, --.
+ $\in (0, +\infty)$
	- **space: Ω**
	- state: X(t,ω) where t^{er}lime, ω $\epsilon \Omega$

Examples:

• **Trajectory of a particle**

• **Noise** \bullet

• **Rain**

• **Messages in a communication bus**

Examples:

• **CPU usage**

• **microcontrollers power consumption**

Continuous time process

Markov process

only the most recent state counts

Stochastic process $X(t)$ is Markov if for any $t_1 < \ldots < t_n < t$ and any sets $A; A_1, \ldots, A_n$

$$
P\{X(t) \in A \mid X(t_1) \in A_1, \dots, X(t_n) \in A_n\}
$$
\n
$$
= P\{X(t) \in A \mid X(t_n) \in A_n\}.
$$
\n
$$
\downarrow
$$
\n<math display="block</math>

Markov chain

- **discrete Markov process**
- **the state at time t+1 depends only on the state at time t**

$$
p_{ij}(t) = P\left\{X(t+1) = j \mid X(t) = i\right\}
$$

= $P\left\{X(t+1) = j \mid X(t) = i, X(t-1) = h, X(t-2) = g, \ldots\right\}$

Transition probability:

$$
p_{ij}^{(\square)}(t)=P\left\{X(t+\Lambda)=j\,\left|\,\,X(t)=i\right.\right\}
$$

Homogenous Markov chain

• **Transition pbb does not depend on the time**

$$
P_{ij}(t)
$$
 is constant, notation P_{ij}
 $P_{ij} = pbb pn{e}j\dot{s}\dot{a}$ ze stanu i do j

• **Transition matrix**

Transition in 2 steps

$$
p_{ij}^{(2)} = P\{X(2) = j \mid X(0) = i\}
$$

$$
= \sum_{k=1}^{n} P\{X(1) = k \mid X(0) = i\} P\{X(2) = j \mid X(1) = k\}
$$

$$
= \sum_{k=1}^{n} p_{ik} p_{kj} = (p_{i1}, \dots, p_{in}) \begin{pmatrix} p_{1j} \\ \vdots \\ p_{nj} \end{pmatrix}.
$$

Transition pbb in two steps

$$
\frac{m\alpha}{d\alpha}
$$
 $\frac{m\alpha}{2}$ $\frac{1}{m\alpha}$ $\frac{1}{m\alpha}$
 $\frac{1}{m\alpha}$ $\frac{1}{m\alpha}$ $\frac{1}{m\alpha}$
 $\frac{1}{m\alpha}$

Probabilities at time t

• **Transition matrix M of a homogenous chain**

Description via a Transition diagram

Transition diagram

2 users: active user disconnects with pbb 0.5 inactive user connects with ppb 0.2 X= number of active users

Steady state distribution

"eventually it does not depend on the initial state"

A collection of limiting probabilities

$$
\pi_x = \lim_{h \to \infty} P_h(x)
$$

is called a steady-state distribution of a Markov chain $X(t)$.

It is not clear in advance that a steady-state distribution exists

Another name used: *stationary distribution*

Example: no steady state distribution

random walk in a bipartite graph

proces

periosyriq

Computing steady state distribution

(the probabilities must sum up to 1)

Weather example cnt

$$
(\pi_1,~\pi_2)=(\pi_1,~\pi_2)\left(\begin{array}{cc} 0.7 & 0.3 \\ 0.4 & 0.6 \end{array}\right)=(0.7\pi_1+0.4\pi_2,~0.3\pi_1+0.6\pi_2)\,.
$$

$$
\begin{cases}\n0.7\pi_1 + 0.4\pi_2 = \pi_1 \\
0.3\pi_1 + 0.6\pi_2 = \pi_2\n\end{cases} \Leftrightarrow \begin{cases}\n0.4\pi_2 = 0.3\pi_1 \\
0.3\pi_1 = 0.4\pi_2\n\end{cases} \Leftrightarrow \pi_2 = \frac{3}{4}\pi_1.
$$

$$
\pi_1 + \pi_2 = \pi_1 + \frac{3}{4}\pi_1 = \frac{7}{4}\pi_1 = 1,
$$
\n
\n
\n $\pi_1 = 4/7$ and $\pi_2 = 3/7.$

15.12.2022

Existence of stationary distribution

A Markov chain is regular if

 $p_{ij}^{(h)} > 0$

for some h and all i, j. That is, for some h, matrix $P^{(h)}$ has only non-zero entries, and h -step transitions from any state to any state are possible.

Any regular Markov chain has a steady-state distribution.

Example: random walk on a bipartite graph --- this property does not hold!

h is even: H is odd:

Breaking periodicity

The trick is to modify the transition function T:

- **with pbb 0.5 keep the old state**
- **with pbb 0.5 change state according to T**

Algorithms based on Markov chains

Example: choose a maximal independent set in a graph at random (with uniform probability)

Difficult:

we can create a maximal independent set (e.g. via a greedy algorithm) , enumerating all MIS might be extremely hard

Approach: via a Markov chain

- **states = independent sets**
- **transitions: simple modifications (removing or adding nodes)**
- **… so that the steady distribution is uniform**

Uniform steady distribution

The case of double stochastic matrix: sum of each row is 1 (must be) sum of each column is 1 (not for all transition matrices) ds

Theorem:

stationary distribution is uniform for a double stochastic transition matrix

Proof: to check that:

$$
\left(\frac{1}{h}+\frac{1}{h},\ldots,\frac{1}{h}\right) \cdot \left[\begin{array}{c} 2 \\ P \end{array}\right] \div \left(\frac{1}{h},\frac{1}{h},\ldots,\frac{1}{h}\right)
$$

Checking one column:

$$
\frac{1}{h} P_{1,j} + \frac{1}{h} P_{2,j} + \frac{1}{h} P_{n,j} = \frac{1}{h} (P_{1,j} + P_{2,j}) = \frac{1}{h} 1 = \frac{1}{h}
$$

Uniform steady distribution – special case: Symmetric transition matrix

$$
\rho_{\iota_{\boldsymbol{d}}} = \rho_{\iota_{\boldsymbol{d}}\,\boldsymbol{\iota}}
$$

Obviously: the matrix is double stochastic → the steady distribution is uniform!

Absorbing states

No exit from an absorbing state

Absorbing state example

Algorithms based on absorbing state

Random walk based on a Markov chain

Run simulation, eventually you are trapped in an absorbing state = a good state, where there is nothing to improve

Counting processes

e.g. Bernoulli trials State in time t = number of succeses in steps 1 through t

Expected number: ptt

Counting processes

state is a counter counter is nondecreasing

Examples:

- **the number of incoming cars on a bridge**
- **the number of emails arrived**

Binomial proces

independent Bernoulli trials

counter= number of successes time frame Δ: one Bernoulli trial per Δ seconds

Expected number of successes:

$$
\mathbf{E}\left\{X\left(\frac{t}{\Delta}\right)\right\} = \frac{t}{\Delta}p
$$

Expected number of successes per second (arrival rate):

$$
\lambda = \frac{p}{\Delta}
$$

Bernoulli counting process - interarrival time $T = Y\Delta$

 $y = \frac{v}{b}$

where Y has geometric distribution

$$
\mathbf{E}(T) = \mathbf{E}(Y)\Delta = \frac{1}{p}\Delta = \frac{1}{\lambda};
$$

$$
\text{Var}(T) = \text{Var}(Y)\Delta^2 = (1-p)\left(\frac{\Delta}{p}\right)^2 \text{ or } \frac{1-p}{\lambda^2}.
$$

Continuous counting process

a limit of Bernoulli counting process with time frame Δ → 0

The number of frames during time t increases to infinity,

$$
n=\frac{t}{\Delta}\uparrow\infty \ \ \text{as} \ \ \Delta\downarrow0.
$$

The probability of an arrival during each frame is proportional to Δ , so it also decreases to 0,

 $p = \lambda \Delta \downarrow 0$ as $\Delta \downarrow 0$.

Continuous counting process:

Poisson as a limit of Binomial

Then, the number of arrivals during time t is a Binomial (n, p) variable with expectation

$$
\mathbf{E} X(t) = np = \frac{tp}{\Delta} = \lambda t.
$$

$$
X(t) = Binomial(n, p) \rightarrow Poisson(\lambda)
$$

Based on the following theorem:

$$
\lim_{\substack{n \to \infty \\ p \to 0 \\ np \to \lambda}} {n \choose x} p^x (1-p)^{n-x} = e^{-\lambda} \frac{\lambda^x}{x!}
$$

Continuous counting process

The *interarrival time T* becomes a random variable with the c.d.f.

$$
F_T(t) = P\{T \le t\} = P\{Y \le n\}
$$

= 1 - (1 - p)ⁿ
= 1 - \left(1 - \frac{\lambda t}{n}\right)^n

$$
\Rightarrow 1 - e^{\lambda t}.
$$

because $T = Y\Delta$ and $t = n\Delta$ Geometric distribution of Y

because $p = \lambda \Delta = \lambda t/n$

This is the "Euler limit": $(1+x/n)^n \to e^x$ as $n \to \infty$

The interarrival time converges to exponential distribution

Continuous counting process

let us inspect the time for k arrivals

 $P\{T_k \leq t\} = P\{k$ -th arrival before time $t = P\{X(t) \geq k\}$ where T_k is Gamma (k, λ) and $X(t)$ is Poisson (λt) .

Applications

What is the probability that in time T more than k requests arrive for a webpage P?

We assume that λ is known (λ requests per minute)

Continuous counting process:

Poisson as a limit of Binomial

However: if we take a time interval that is not very small with respect to λ, then some differences occur:

❑ **Binomial: at most one arrival in the interval**

❑ **Poisson: more than one possible**

… even if the arrival rate is the same λ, there is a greater variance for Poisson

Solution for λ=7 hits per minute , assumed Poisson process

Pbb for 10000 hits within 24 hours?

Solution. The time of the 10,000-th hit T_k has Gamma distribution with parameters $k =$ 10,000 and $\lambda = 7$ min⁻¹. Then, the expected time of the k-th hit is

$$
\mu = E(T_k) = \frac{k}{\lambda} = 1,428.6 \text{ min or } 23.81 \text{ hrs.}
$$

$$
\sigma = \text{Std}(T_k) = \frac{\sqrt{k}}{\lambda} = 14.3 \text{ min.}
$$

Pbb of more than 10000 hits?

A shortcut: CLT (we do not have to care about Gamma distribution!)

$$
P\left\{T_k < 1440\right\} = P\left\{\frac{T_k - \mu}{\sigma} < \frac{1440 - 1428.6}{14.3}\right\} = P\left\{Z < 0.80\right\} = \underbrace{0.7881}_{\text{0.1416}}
$$

Conclusion

Easy way to solve many problems regarding required capacity …