Probability and statistics, 2022, Computer Science Algorithmics, Undergraduate Course, Part II, lecturer: Mirosław Kutyłowski

**3- Stochastic Processes** 

### **Stochastic process**

- Time dependent random variables : time+space
  - time: 1, 2, 3, 4, --.  $+ \in (0 + \infty)$
  - space: Ω
  - state:  $X(t,\omega)$  where  $t \in Time, \omega \in \Omega$

#### **Examples:**



• Trajectory of a particle

Noise

• Rain

• Messages in a communication bus

•

#### **Examples:**

• CPU usage

microcontrollers power consumption



# **2** Continuous time process

#### **Markov process**

only the most recent state counts

Stochastic process X(t) is Markov if for any  $t_1 < ... < t_n < t$  and any sets  $A; A_1, \ldots, A_n$ 



# Markov chain



- discrete Markov process
- the state at time t+1 depends only on the state at time t

$$p_{ij}(t) = P \{ X(t+1) = j \mid X(t) = i \}$$
  
=  $P \{ X(t+1) = j \mid X(t) = i, X(t-1) = h, X(t-2) = g, \ldots \}$ 

**Transition probability:** 

$$p_{ij}^{(\mathbb{L})}(t) = \mathbf{P} \{ X(t+A) = j \mid X(t) = i \}$$

#### **Homogenous** Markov chain

• Transition pbb does not depend on the time

• Transition matrix

| ( | $p_{11}$ | $p_{12}$ | • • • | $p_{1n}$ |   |
|---|----------|----------|-------|----------|---|
|   | $p_{21}$ | $p_{22}$ | • • • | $p_{2n}$ |   |
| Į | ÷        | ÷        | ÷     | ÷        |   |
| ĺ | $p_{n1}$ | $p_{n2}$ | •••   | $p_{nn}$ | J |

#### **Transition in 2 steps**



$$p_{ij}^{(2)} = P\{X(2) = j \mid X(0) = i\}$$

$$= \sum_{k=1}^{n} P\{X(1) = k \mid X(0) = i\} \cdot P\{X(2) = j \mid X(1) = k\}$$
$$= \sum_{k=1}^{n} p_{ik} p_{kj} = (p_{i1}, \dots, p_{in}) \begin{pmatrix} p_{1j} \\ \vdots \\ p_{nj} \end{pmatrix}.$$

#### **Transition pbb in two steps**



#### **Probabilities at time t**

Transition matrix M of a homogenous chain



#### **Description via a Transition diagram**



# **Transition diagram**

2 users: active user disconnects with pbb 0.5 inactive user connects with ppb 0.2 X= number of active users



#### **Steady state distribution**

"eventually it does not depend on the initial state"

A collection of limiting probabilities

$$\pi_x = \lim_{h \to \infty} P_h(x)$$

is called a steady-state distribution of a Markov chain X(t).

It is not clear in advance that a steady-state distribution exists

Another name used: stationary distribution

#### **Example: no steady state distribution**

random walk in a bipartite graph



proces periodychy

#### **Computing steady state distribution**

$$P_{h}P = P_{0}P^{h}P = P_{0}P^{h+1} = P_{h+1}.$$

$$(\Pi_{0},\Pi_{1}) \begin{pmatrix} 0 \\ 0 \end{pmatrix} \ddagger_{0} \Pi_{0} \\ 0 \end{pmatrix} \ddagger_{0} \Pi_{0}$$
this is a system of linear equations. Moreover:
$$\sum_{\nu} \Pi_{\nu} = 4$$

(the probabilities must sum up to 1)

#### Weather example cnt

$$(\pi_1, \pi_2) = (\pi_1, \pi_2) \begin{pmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{pmatrix} = (0.7\pi_1 + 0.4\pi_2, 0.3\pi_1 + 0.6\pi_2).$$

$$\begin{cases} 0.7\pi_1 + 0.4\pi_2 &= \pi_1 \\ 0.3\pi_1 + 0.6\pi_2 &= \pi_2 \end{cases} \Leftrightarrow \begin{cases} 0.4\pi_2 &= 0.3\pi_1 \\ 0.3\pi_1 &= 0.4\pi_2 \end{cases} \Leftrightarrow \pi_2 = \frac{3}{4}\pi_1.$$

$$\pi_1 + \pi_2 = \pi_1 + \frac{3}{4} \pi_1 = \frac{7}{4} \pi_1 = 1,$$
  
 $\underline{\pi_1 = 4/7}$  and  $\underline{\pi_2 = 3/7}.$ 

#### 15.12.2022

#### **Existence of stationary distribution**

A Markov chain is regular if

 $p_{ij}^{(h)} > 0$ 

for some h and all i, j. That is, for some h, matrix  $P^{(h)}$  has only non-zero entries, and h-step transitions from any state to any state are possible.

Any regular Markov chain has a steady-state distribution.

Example: random walk on a bipartite graph --- this property does not hold!

h is even: H is odd:

#### **Breaking periodicity**

The trick is to modify the transition function T:

- with pbb 0.5 keep the old state
- with pbb 0.5 change state according to T

# Algorithms based on Markov chains

Example: choose a maximal independent set in a graph at random (with uniform probability)

Difficult:

we can create a maximal independent set (e.g. via a greedy algorithm), enumerating all MIS might be extremely hard

### Approach: via a Markov chain

- states = independent sets
- transitions: simple modifications (removing or adding nodes)
- ... so that the steady distribution is uniform

# **Uniform steady distribution**

The case of double stochastic matrix: sum of each row is 1 (must be) sum of each column is 1 (not for all transition matrices)

**Theorem:** 

stationary distribution is uniform for a double stochastic transition matrix

**Proof: to check that:** 

$$\begin{pmatrix} 1 & \frac{1}{n} \\ \frac{1}{n} \end{pmatrix} \cdot \begin{bmatrix} p \\ p \end{bmatrix} = \begin{pmatrix} 2 \\ \frac{1}{n} \\ \frac{1}{n}$$

**Checking one column:** 

$$\frac{1}{h} P_{1j} + \frac{1}{h} P_{2j} + \frac{1}{h} P_{nj} = \frac{1}{h} (P_{1j} + - + P_{nj}) = \frac{1}{h} (\frac{1}{h} - \frac{1}{h})$$

# Uniform steady distribution – special case: Symmetric transition matrix



Obviously: the matrix is double stochastic → the steady distribution is uniform!

### **Absorbing states**

No exit from an absorbing state



#### **Absorbing state example**



### Algorithms based on absorbing state

Random walk based on a Markov chain

Run simulation, eventually you are trapped in an absorbing state = a good state, where there is nothing to improve

#### **Counting processes**

e.g. Bernoulli trials State in time t = number of succeses in steps 1 through t

Expected number: p't

### **Counting processes**

state is a counter counter is nondecreasing

**Examples:** 

- the number of incoming cars on a bridge
- the number of emails arrived

#### **Binomial proces**

independent Bernoulli trials

counter= number of successes time frame  $\Delta$ : one Bernoulli trial per  $\Delta$  seconds

**Expected number of successes:** 

$$\mathbf{E}\left\{X\left(\frac{t}{\Delta}\right)\right\} = \frac{t}{\Delta}p$$

**Expected number of successes per second (arrival rate):** 

$$\lambda = \frac{p}{\Delta}$$

# Bernoulli counting process - interarrival time

 $\mathcal{Y} = \frac{\mathcal{V}}{\mathcal{S}}$ 

 $T = Y\Delta$ 

where Y has geometric distribution

$$\begin{split} \mathbf{E}(T) &= \mathbf{E}(Y)\Delta = \frac{1}{p}\Delta = \frac{1}{\lambda};\\ \mathrm{Var}(T) &= \mathrm{Var}(Y)\Delta^2 = (1-p)\left(\frac{\Delta}{p}\right)^2 \text{ or } \frac{1-p}{\lambda^2}. \end{split}$$

#### **Continuous counting process**

#### a limit of Bernoulli counting process with time frame $\Delta \rightarrow 0$

The number of frames during time t increases to infinity,

$$n = \frac{t}{\Delta} \uparrow \infty \text{ as } \Delta \downarrow 0.$$

The probability of an arrival during each frame is proportional to  $\Delta$ , so it also decreases to 0,

 $p = \lambda \Delta \downarrow 0$  as  $\Delta \downarrow 0$ .

# **Continuous counting process:**

#### **Poisson as a limit of Binomial**

Then, the number of arrivals during time t is a Binomial(n, p) variable with expectation

$$\mathbf{E}X(t) = np = \frac{tp}{\Delta} = \lambda t.$$

$$X(t) = \text{Binomial}(n, p) \rightarrow \text{Poisson}(\lambda)$$

**Based on the following theorem:** 

$$\lim_{\substack{n \to \infty \\ p \to 0 \\ np \to \lambda}} {n \choose x} p^x (1-p)^{n-x} = e^{-\lambda} \frac{\lambda^x}{x!}$$

#### **Continuous counting process**

The interarrival time T becomes a random variable with the c.d.f.

$$F_T(t) = P\{T \le t\} = P\{Y \le n\}$$
$$= 1 - (1 - p)^n$$
$$= 1 - \left(1 - \frac{\lambda t}{n}\right)^n$$
$$\to 1 - \bar{e}^{\lambda t}.$$

because  $T = Y\Delta$  and  $t = n\Delta$ Geometric distribution of Y

because  $p = \lambda \Delta = \lambda t/n$ This is the "Euler limit":  $(1 + x/n)^n \to e^x$  as  $n \to \infty$ 

# The interarrival time converges to exponential distribution

#### **Continuous counting process**

let us inspect the time for k arrivals

 $P\{T_k \leq t\} = P\{k \text{-th arrival before time } t\} = P\{X(t) \geq k\}$ where  $T_k$  is  $\text{Gamma}(k, \lambda)$  and X(t) is  $\text{Poisson}(\lambda t)$ .

## **Applications**

What is the probability that in time T more than k requests arrive for a webpage P?

We assume that  $\lambda$  is known ( $\lambda$  requests per minute)

#### **Continuous counting process:**

#### **Poisson as a limit of Binomial**

However: if we take a time interval that is not very small with respect to  $\lambda$ , then some differences occur:

Binomial: at most one arrival in the interval

**Poisson: more than one possible** 

... even if the arrival rate is the same  $\lambda$ , there is a greater variance for Poisson

#### **Solution** for $\lambda$ =7 hits per minute , assumed Poisson process

#### Pbb for 10000 hits within 24 hours?

<u>Solution</u>. The time of the 10,000-th hit  $T_k$  has Gamma distribution with parameters k = 10,000 and  $\lambda = 7 \text{ min}^{-1}$ . Then, the expected time of the k-th hit is

$$\mu = \mathbf{E}(T_k) = \frac{k}{\lambda} = \underline{1,428.6 \text{ min or } 23.81 \text{ hrs.}}$$

$$\sigma = \operatorname{Std}(T_k) = \frac{\sqrt{k}}{\lambda} = 14.3 \text{ min.}$$

#### Pbb of more than 10000 hits?

A shortcut: CLT (we do not have to care about Gamma distribution!)

$$P\left\{T_k < 1440\right\} = P\left\{\frac{T_k - \mu}{\sigma} < \frac{1440 - 1428.6}{14.3}\right\} = P\left\{Z < 0.80\right\} = \underline{0.7881}.$$

#### Conclusion

Easy way to solve many problems regarding required capacity ...