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3-stochastic processes 

Stochastic process

• Time dependent random variables :  time+space

• time:

• space: 

• state: X(t,ω) where  t  Time, ω Ω

Ω



3-stochastic processes 

Examples: 

• Trajectory of a particle

• Noise

• Rain

• Messages in a communication bus
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Examples:

• CPU usage

• microcontrollers power consumption
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Discrete time process 

Continuous time process
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Markov process

only the most recent state counts
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Markov chain 

• discrete Markov process
• the state at time t+1 depends only on the state at time t

Transition probability: 
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Homogenous Markov chain 

• Transition pbb does not depend on the time

• Transition matrix 
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Transition in 2 steps
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Transition pbb in two steps 

=
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Probabilities at time t

• Transition matrix M of a homogenous chain 
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Description via a Transition diagram 
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Transition diagram
2 users:  active user disconnects with pbb 0.5

inactive user connects with ppb 0.2 
X= number of active users
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Steady state distribution 

It is not clear in advance that a steady-state distribution exists

Another name used: stationary distribution

„eventually it does not depend on the 
initial state”
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Example: no steady state distribution

random walk in a bipartite graph 
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Computing steady state distribution

this is a system of linear equations.  Moreover:

(the probabilities must sum up to 1) 
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Weather example cnt
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Existence of stationary distribution 

Example: random walk on a bipartite graph --- this property does not hold!  

h is even:
H is odd: 
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Breaking periodicity

The trick is to modify the transition function T:
• with pbb 0.5 keep the old state
• with pbb 0.5 change state according to T  
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Algorithms based on Markov chains

Example: choose a maximal independent set in a graph at random (with 
uniform probability)

Difficult: 
we can create a maximal independent set (e.g. via a greedy algorithm) , 

enumerating all MIS might be extremely hard 
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Approach: via a Markov chain 

• states = independent sets

• transitions: simple modifications (removing or adding nodes)

• … so that the steady distribution is uniform  
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Uniform steady distribution
The case of double stochastic matrix:
sum of each row is 1  (must be)
sum of each column is 1  (not for all transition matrices)

Theorem: 
stationary distribution is uniform for a double stochastic transition matrix

Proof:   to check that:

Checking one column: 

ds
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Uniform steady distribution – special case:
Symmetric transition matrix

Obviously: the matrix is double stochastic 
→  the steady distribution is uniform!
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Absorbing states 

No exit from an absorbing state

absorbing state 
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Absorbing state example
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Algorithms based on absorbing state

Random walk based on a Markov chain

Run simulation, eventually you are trapped in an absorbing state = a good 
state, where there is nothing to improve
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Counting processes 

e.g. Bernoulli trials
State in time t = number of succeses in steps 1 through t

Expected number: p t
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Counting processes

state is a counter
counter is nondecreasing 

Examples: 
• the number of incoming cars on a bridge
• the number of emails arrived 
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Binomial proces

independent Bernoulli trials

counter= number of successes
time frame Δ:  one Bernoulli trial per Δ seconds

Expected number of successes:  

Expected number of successes per second (arrival rate): 
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Bernoulli counting process - interarrival time  

where Y has geometric distribution
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Continuous counting process 

a limit of Bernoulli counting process with time frame Δ → 0
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Continuous counting process: 
Poisson as a limit of Binomial

Based on the following theorem: 
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Continuous counting process 

The interarrival time  converges to exponential 
distribution 
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Continuous counting process

let us inspect the time for k arrivals
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Applications

What is the probability that in time T more than k  requests arrive 
for a webpage P?

We assume that λ is known (λ requests per minute) 
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Continuous counting process: 
Poisson as a limit of Binomial

However: if we take a time interval that is not very small with respect to λ, 
then some differences occur:

❑ Binomial: at most one arrival in the interval

❑ Poisson: more than one possible 

… even if the arrival rate is the same λ, there is a greater variance for Poisson
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Solution for λ=7 hits per minute , assumed Poisson process 

Pbb for 10000 hits within 24 hours?
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Pbb of more than 10000 hits?

A shortcut: CLT (we do not have to care about  Gamma distribution!)



3-stochastic processes 

Conclusion

Easy way to solve many problems regarding required capacity …
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