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3- Stochastic Processes



Stochastic process

* Time dependent random variables : time+space

. time: /],2’7_,,(11___
+ ¢ (04-@)

* space: 0O

e state: X(t,w) where t(Time, wcQ
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Examples:

ad

* Trajectory of a particle
* Noise

e Rain

Messages in a communication bus

3-stochastic processes



Examples:

* CPU usage

* microcontrollers power consumption
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A )Discrete time process

‘2,) Continuous time process
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Markov process

only the most recent state counts

Stochastic process X () is Markov if for any £, < ... < t;, < { and any sets
A Ay, LA,
P{X(t)eA| X(t1) € A1,_..,X(tn) € Ay}
= P{X(t)e A| X(tn) € An}. (6.1)

e

o b 2

Jr| 4‘\*1 ’l-"'l '{;
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Markov chain o _,5‘ '

* discrete Markov process
* the state at time t+1 depends only on the state at time t

py(t)=P{X(t+1)=7| X(t)=1i}
= P{X(t+1)=3 | X(t)=1, X(t—1)=h, X(t—-2)=g,...}
—_——-‘\w

Transition probability:

p(t) = P{X(t+4) =7 X(t) =i}
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Homogenous Markov chain

* Transition pbb does not depend on the time

PL$(+) -\5 Cohf;.")ra_w“\-! “b_Jfaf\:lo\.q'

- : ( P11 P12 - Pin )
* Transition matrix P2y Paz -+ Pan
t\ Pni Pn2 - DPnn /
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Transition in 2 steps v > K — |

py = P{X(2)=j|X(0)=1}

= Y P{X(1)=k| X(0)=i}P{X(2)=j| X(1) =k}

k=1
n P1j

= Y _piepri = (Pir, ..., Pin) ( ; ) .
k=1 " Dni
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Transition pbb in two steps
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Probabilities at time t

* Transition matrix M of a homogenous chain

Po'Mt:P—b

ut

| )

P o
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Description via a Transition diagram
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Transition diagram

2 users: active user disconnects with pbb 0.5
inactive user connects with ppb 0.2
X= number of active users

064 | | X=0 )3 0.25
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,eventually it does not depend on the

Steady state distribution initial state”

A collection of hmiting probabilities

Ty = lim Py(x)

h— oo

15 called a steady-state distribution of a Markov chain X (t).

It is not clear in advance that a steady-state distribution exists

Another name used: stationary distribution
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Example: no steady state distribution pro ce-$

random walk in a bipartite graph P e 0" \‘f,)\ 3

Y/ \q S

Pe-wbs'\g hel,: wo dde Pp{(s).:o

wi tpo..vu)s\'z o= §ohe- \7.9 (C.p) %
\ot 4 (S) =0
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Computing steady state distribution

PoP = PyP"P = PyP" = P4y,

@

this is a system of linear equations. Moreover:
ST, -1
U

(the probabilities must sum up to 1)

ol

3-stochastic processes



Weather example cnt

|::TIT1. ﬂ’g} = {TI._J_:, ﬂ'-li:l ( E_Iri 33 ) = {ﬂ.?ﬂl + [].4??2._ ﬂ.ﬂﬂ'l + []Eﬂ'g} :

0.7my +0.4m = m 0.4m = 0.3m d
{E].Hﬁrl—l—ﬂ.ﬂﬁg - {n.am — 04w, — T2 g™
T + T T —I—E"r TT = 1
I.l .'-] — I.l 4 ] _'l — -1: i 1 —

T =4/7 and m = 3/7.
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Existence of stationary distribution

A Markov chain 1s regular if
(h) .
pi; =0

for some h and all i, j. That is, for some h, matrix P"™ has only non-zero
entries, and h-step transitions from any state to any state are possible.

Any regular Markov chain has a steady-state distribution.

Example: random walk on a bipartite graph --- this property does not hold!

h is even:
H is odd:
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Breaking periodicity

The trick is to modify the transition function T:
* with pbb 0.5 keep the old state
 with pbb 0.5 change state accordingto T
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Algorithms based on Markov chains

Example: choose a maximal independent set in a graph at random (with
uniform probability)

Difficult:

we can create a maximal independent set (e.g. via a greedy algorithm),
enumerating all MIS might be extremely hard
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Approach: via a Markov chain

* states = independent sets
e transitions: simple modifications (removing or adding nodes)

e ...so that the steady distribution is uniform
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Uniform steady distribution
The case of double stochastic matrix:
sum of each row is 1 (must be)

sum of each column is 1 (not for all transition matrices)

ds

Theorem:
stationary distribution is uniform for a double stochastic transition matrix

Proof: to check that:

1 A4 A L U
(Elhl IM). p H(h"ﬂ} !h)

—

Checking one column: "; P,

li,ﬂl—l—%"i_ —_‘i £
d h N Phb n (lﬁ i °

6"' ]
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Uniform steady distribution — special case:
Symmetric transition matrix

Ptd - Pd."

Obviously: the matrix is double stochastic
- the steady distribution is uniform!
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Absorbing states

No exit from an absorbing state

Q absorbing state

O
O
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Absorbing state example
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Algorithms based on absorbing state

Random walk based on a Markov chain

Run simulation, eventually you are trapped in an absorbing state = a good
state, where there is nothing to improve
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Counting processes

e.g. Bernoulli trials
State in time t = number of succeses in steps 1 through t

Expected number: pt
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Counting processes

state is a counter
counter is nondecreasing

Examples:
 the number of incoming cars on a bridge
* the number of emails arrived
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Binomial proces

independent Bernoulli trials

counter= number of successes
time frame A: one Bernoulli trial per A seconds

Expected number of successes: g ) v b — i p
A A

Expected number of successes per second (arrival rate):
Ji'i'
A= —
A

3-stochastic processes



Bernoulli counting process - interarrival time
I'=YA

where Y has geometric distribution

] 1
E(I') = EYA=-A=—;
P A
Var(T}) = Var(Y)A? = (1 —p) (é) ') § 1 __}’”-
p A“
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Continuous counting process

a limit of Bernoulli counting process with time frame A - 0

The number of frames during time { increases to infinity,

n = & Too as A LD

The probability of an arrival during each frame is proportional to A, so it also decreases to
0,
p=AAL0 as A |0

3-stochastic processes



Continuous counting process:

Poisson as a limit of Binomial

Then, the number of arrivals during time t is a Binomial(n, p) variable with expectation

| {
EX(t) = np — E — A

X (t) = Binomial(n,p) — Poisson(\)

Based on the following theorem:

lim ( ?; )prtl —p)" Tt = f?:_;'“%
n — OC i .
p—+ 0
np —+ A

3-stochastic processes



Continuous counting process

The interarrival time T becomes a random variable with the c.d.f.

Fr(t) = P{T<tl=P{Y <n)
= 1—-(1—-p)"
TE
Y
T
s 1 — e,

The interarrival time converges to exponential
distribution

3-stochastic processes

bhecanse T' = YA and £t = n

Geometrie distribution of Y

because p = AA = At/n

This 15 the “Euler limit™:
(1+ax/n)" = €® as n — 0



Continuous counting process

let us inspect the time for k arrivals

P {Ty <t} = P{ k-th arrival before time t } = P{X(t) > k}

where T}, is Gammal(k, A) and X (¢) is Poisson(At).
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Applications

What is the probability that in time T more than k requests arrive
for a webpage P?

We assume that A is known (A requests per minute)
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Continuous counting process:
Poisson as a limit of Binomial

However: if we take a time interval that is not very small with respect to A,
then some differences occur:

] Binomial: at most one arrival in the interval
J Poisson: more than one possible

... even if the arrival rate is the same A, there is a greater variance for Poisson
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Solution for A=7 hits per minute , assumed Poisson process

Pbb for 10000 hits within 24 hours?

Solution. The time of the 10, 000-th hit T} has Gamma distribution with parameters & =
10,000 and A = 7 min—'. Then, the expected time of the k-th hit is

k
= E(T.) = 3= 1.428.6 min or 23.81 hrs.

#

o= Std(TL) = % = 14.3 min.
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Pbb of more than 10000 hits?

A shortcut: CLT (we do not have to care about Gamma distribution!)

T —p 1440 — 1428.6
a 14.3

P {T}. < 1440} = F'{ } — P{Z < 0.80} = 0.7881.
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Conclusion

Easy way to solve many problems regarding required capacity ...
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