Metody probabilistyczne i statystyka, 2022 informatyka algorytmiczna, WIiT PWr <u>6-Statistical Inference</u>

Goal: parameter estimation

- population given
- distribution is known (e.g. normal distribution)
- parameters of the distribution --- to be determined

Example: λ of the Poisson distribution?

Solution: $\lambda = E(X)$, so estimate the mean

General approach: expressions for mean, variance,... may contain parameters to be estimated 6-statistical inference

Strategic question:

which function(s) apply to the sample to get a reliable information?

Methods of moments

The k-th population moment is defined as

$$\mu_k = \mathbf{E}(X^k).$$

The k-th sample moment

$$m_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$

Central moments

$$\mu'_k = \mathbf{E}(X - \mu_1)^k$$

$$m'_{k} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})^{k}$$

Method of moments

In this system:

- concrete values on the right side
- expressions with parameters on the left side

Method of moments – example

Gamma distribution with parameters α , λ :

$$\begin{cases} \mu_1 = \mathbf{E}(X) = \alpha/\lambda = m_1 \\ \mu'_2 = \operatorname{Var}(X) = \alpha/\lambda^2 = m'_2. \end{cases}$$

Example: Pareto distribution

well describes the distribution of file sizes sent on the internet

Its cdf:

$$F(x) = 1 - \left(\frac{x}{\sigma}\right)^{-\theta}$$
 for $x > \sigma$.

Pareto distribution

cdf:

$$F(x) = 1 - \left(\frac{x}{\sigma}\right)^{-\theta}$$
 for $x > \sigma$.

So the density is:

$$f(x) = F'(x) = \frac{\theta}{\sigma} \left(\frac{x}{\sigma}\right)^{-\theta - 1} = \theta \sigma^{\theta} x^{-\theta - 1}$$

Pareto distribution -- computing moments:

$$\mu_1 = \mathbf{E}(X) = \int_{\sigma}^{\infty} x f(x) dx = \theta \sigma^{\theta} \int_{\sigma}^{\infty} x^{-\theta} dx$$

$$= \theta \sigma^{\theta} \left. \frac{x^{-\theta+1}}{-\theta+1} \right|_{x=\sigma}^{x=\infty} = \frac{\theta \sigma}{\theta-1}, \quad \text{for } \theta > 1,$$

$$\mu_2 = \mathbf{E}(X^2) = \int_{\sigma}^{\infty} x^2 f(x) \, dx = \theta \sigma^{\theta} \int_{\sigma}^{\infty} x^{-\theta+1} dx = \frac{\theta \sigma^2}{\theta - 2}, \quad \text{for } \theta > 2.$$

Pareto distribution

$$\begin{cases} \mu_1 &=& \frac{\theta\sigma}{\theta-1} &=& m_1\\ \mu_2 &=& \frac{\theta\sigma^2}{\theta-2} &=& m_2 \end{cases}$$

so after some calculations:

$$\hat{\theta} = \sqrt{\frac{m_2}{m_2 - m_1^2}} + 1 \text{ and } \hat{\sigma} = \frac{m_1(\hat{\theta} - 1)}{\hat{\theta}}.$$

Method of Maximum Likelihood

Sample: $X_1, ..., X_n$ Distribution: with unknown parameter λ

What is the value of λ ?

Method: find λ for which obtaining $X_1, ..., X_n$ has the highest probability

For a choice of parameter λ :

parameter λ is chosen so that :

Method of Maximum Likelihood – Discrete Case

The goal is to maximize:

$$P\{X = (X_1, \dots, X_n)\} = P(X) = P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i),$$

Trick: it is easier to maximize a sum than a product, so take logarithms:

$$\ln \prod_{i=1}^{n} P(X_i) = \sum_{i=1}^{n} \ln P(X_i)$$

Method of Maximum Likelihood –example Poisson distribution

$$P(x) = e^{-\lambda} \frac{\lambda^x}{x!},$$

).

Probability:

logarithms:
$$\ln P(x) = -\lambda + x \ln \lambda - \ln(x!)$$

Maximize:
$$\ln P(X) = \sum_{i=1}^{n} (-\lambda + X_i \ln \lambda) + C = -n\lambda + \ln \lambda \sum_{i=1}^{n} X_i + C,$$
Finding local maximum:
$$\frac{\partial}{\partial \lambda} \ln P(X) = -n + \frac{1}{\lambda} \sum_{i=1}^{n} X_i = 0.$$
Solution:
$$\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} X_i = \bar{X}.$$

Method of Maximum Likelihood – continuous case

FIGURE 9.1: Probability of observing "almost" X = x.

Conclusion: take parameters such that f(X) is maximal

Method of Maximum Likelihood – example: exponential density

density:
$$f(x) = \lambda e^{-\lambda x}$$
,

$$\mathsf{In(sample density):} \quad \ln f(X) = \sum_{i=1}^n \ln \left(\lambda e^{-\lambda X_i} \right) = \sum_{i=1}^n \left(\ln \lambda - \lambda X_i \right) = n \ln \lambda - \lambda \sum_{i=1}^n X_i.$$

Find maximum of ln(f(X)):

derivative:
$$\frac{\partial}{\partial \lambda} \ln f(X) = \frac{n}{\lambda} - \sum_{i=1}^{n} X_i = 0,$$

solution: $\hat{\lambda} = \frac{n}{\sum X_i} = \frac{1}{\overline{X}}.$

To be checked: what happens for $\lambda = 0$ and infinity, (the maximum is not always where f'(x)=0)

Estimating estimator's error

estimator is a random variable

Question: how concentrated is the estimator value around the true value

Example: Poisson distribution

already we have obtained an estimator for λ :

$$\sigma = \sqrt{\lambda}$$
 for the Poisson $(\lambda) \leftarrow \hat{\lambda} = \bar{X}$

Approach 1:

$$\sigma(\hat{\lambda}) = \sigma(\bar{X}) = \sigma/\sqrt{n} = \sqrt{\lambda/n},$$

Then we replace λ by its estimator:

$$s_1(\hat{\lambda}) = \sqrt{\frac{\bar{X}}{n}} = \frac{\sqrt{\sum X_i}}{n}.$$

Example Poisson distribution

Approach 2: We know that $\sigma(\bar{X}) = \sigma/\sqrt{n}$,

So put: $s(\bar{X}) = s/\sqrt{n}$

... and use unbiased estimator for s:

$$s_2(\hat{\lambda}) = \frac{s}{\sqrt{n}} = \sqrt{\frac{\sum (X_i - \bar{X})^2}{n(n-1)}}.$$

Which approach is better? It depends. Each method is only an estimation ... and not

the true value.

Confidence interval

An interval [a, b] is a $(1 - \alpha)100\%$ confidence interval for the parameter θ if it contains the parameter with probability $(1 - \alpha)$,

$$P\left\{a \le \theta \le b\right\} = 1 - \alpha.$$

The coverage probability $(1 - \alpha)$ is also called a confidence level.

Remember: we do not know for sure that the true value belongs to the confidence interval!

Situation

Illustration of computed confidence intervals

Confidence interval for normal distribution

Confidence interval for unbiased estimator with normal distribution

after normalizing to Standard Normal distribution:

$$P\left\{-z_{\alpha/2} \leq \frac{\hat{\theta} - \theta}{\sigma(\hat{\theta})} \leq z_{\alpha/2}\right\} = 1 - \alpha.$$

$$P\left\{\hat{\theta} - z_{\alpha/2} \cdot \sigma(\hat{\theta}) \le \theta \le \hat{\theta} - z_{\alpha/2} \cdot \sigma(\hat{\theta})\right\} = 1 - \alpha.$$

Confidence interval [a,b] where:

$$a = \hat{\theta} - z_{\alpha/2} \cdot \sigma(\hat{\theta})$$
$$b = \hat{\theta} + z_{\alpha/2} \cdot \sigma(\hat{\theta})$$

Application: confidence level for a sample mean

it applies for:

- sum of (a few) random variables with normal distribution
- a large number of samples for any random variable (due to CLT the sum ≈ normal distribution)

$$\begin{aligned} \mathrm{E}(\bar{X}) &= \mu \\ \sigma(\bar{X}) &= \sigma/\sqrt{n}. \end{aligned}$$

So the confidence interval with endpoints:

$$\bar{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Confidence interval for difference between two means:

- 1. estimator of mean value: $\hat{\theta} = \bar{X} \bar{Y}$. (it is unbiased)
- if the sample is large, then approximately normal distribution
 estimate variance:

$$\sigma(\hat{\theta}) = \sqrt{\operatorname{Var}\left(\bar{X} - \bar{Y}\right)} = \sqrt{\operatorname{Var}\left(\bar{X}\right) + \operatorname{Var}\left(\bar{Y}\right)} = \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}.$$

4. Confidence interval with endpoints:

$$\bar{X} - \bar{Y} \pm z_{\alpha/2} \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}$$

How big should be the sample size?

good question,

- if we have to pay for each X_i
- or getting a new sample is problematic or impossible (like finding the next skeleton of Tyranosaurus to estimate their height)

How big should be the sample size?

Confidence interval depends on sample size n and normal distribution:

margin =
$$z_{\alpha/2} \cdot \sigma / \sqrt{n}$$
.

So we have a simple rule:

In order to attain a margin of error Δ for estimating a population mean with a confidence level $(1 - \alpha)$,

a sample of size
$$n \ge \left(\frac{z_{\alpha/2} \cdot \sigma}{\Delta}\right)^2$$
 is required.

so reducing Δ by factor 0.1 increases n by factor 100 (costs!)

Confidence interval for unknown variance

Example: population with fraction *p* of objects with property *A*

Sample proportion:

$$\hat{p} = \frac{\text{number of sampled items from } A}{n}$$

 So:
 $X_i = \begin{cases} 1 & \text{if } i \in A \\ 0 & \text{if } i \notin A \end{cases}$

 Var $(\hat{p}) = \frac{p(1-p)}{n}$
 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}$

Problem for small sample size

Then the estimation of variance is quite poor!

Recall normalization (for normal distribution):

$$Z = \frac{\hat{\theta} - \mathbf{E}(\hat{\theta})}{\sigma(\hat{\theta})} = \frac{\hat{\theta} - \theta}{\sigma(\hat{\theta})},$$

For small sample we consider so called T-ratio:

$$t = \frac{\hat{ heta} - heta}{s(\hat{ heta})}$$

Student's distribution

Introduced by W. Gosset (pseudonym Student):

for T-ratio:
$$t = \frac{\hat{\theta} - \theta}{s(\hat{\theta})}$$

computed for a sample of size *n* for random variable with normal distribution

Subtle issue: T-ratio is not normal (the denominator is also an estimator!)

True distribution: Student's distribution with "*n*-1 degrees of freedom"

Using Students distribution:

For each *n*:

A table with precomputed values for any confidence interval

 then follow the same steps as for normal distribution to get the confidence interval:

$$ar{X}\pm t_{lpha/2}rac{s}{\sqrt{n}}$$
 Only this has changed

Example: *X*-*Y* for random variables *X*, *Y* with variance *σ*:

assumption:
$$\sigma_X^2 = \sigma_Y^2 = \sigma^2$$
.
sample variance: $s_p^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2 + \sum_{i=1}^m (Y_i - \bar{Y})^2}{n + m - 2} = \frac{(n - 1)s_X^2 + (m - 1)s_Y^2}{n + m - 2}$

Also:
$$\sigma(\hat{\theta}) = \sqrt{\operatorname{Var}\left(\bar{X} - \bar{Y}\right)} = \sqrt{\operatorname{Var}\left(\bar{X}\right) + \operatorname{Var}\left(\bar{Y}\right)} = \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}.$$

finally: confidence interval from Student's distribution:

$$\bar{X} - \bar{Y} \pm t_{\alpha/2} \, s_p \, \sqrt{\frac{1}{n} + \frac{1}{m}}$$

easy..

Omitted slide

Example: difference between two variables with the different variance:

problem: not the Student distribution anymore! no compact and clean solution

Approximation (only to see):1. computing "degree of freedom"

2. Proceed with formulas for Student's distribution with this degree

$$\bar{X} - \bar{Y} \pm t_{\alpha/2} \sqrt{\frac{s_X^2}{n} + \frac{s_Y^2}{m}}$$

Hypothesis testing

Population -- claimed property H₀ -- alternative property H₁ so that both cannot hold at the same time Case 1: unrealistic Data from the whole population available:

one can say which of them is false

Case 2: real life Only a sample is available H_0 or H_1 is true?

Example

 H_0 = the proportion of defect chips is 3% H_1 = the proportion of defect chips is >3%

Test outcomes

	Result of the test		
	Reject H_0	Accept H_0	
H_0 is true	Type I error	correct	
H_0 is false	correct	Type II error	

Examples: biometric recognition, AI is full of such situations

(e.g., H₀= "face seen by the smartphone is the face of the smartphone owner")

Significance level of a test (po

(poziom istotności)

For type 1 error:

 $\alpha = \mathbf{P} \{ \text{reject } H_0 \mid H_0 \text{ is true} \}$

Power of the test

Alternative hypothesis H_A with parameters θ

 $p(\theta) = P \{ \text{reject } H_0 \mid \theta; H_A \text{ is true} \}.$

General approach

- H₀ corresponds to some distribution F₀
- define statistic T
- define acceptance and rejection regions so that probability of values from rejection regions is at most α

Significance level = P { Type I error } = P { Reject $| H_0$ } = P { $T \in \mathcal{R} | H_0$ } = α .

For normal distribution mean 0 – two sided Z test

(a) Two aided 7 test

Right tail alternative

(a) A level α test with a **right-tail alternative** should

$$\begin{cases} \text{reject } H_0 & \text{if } Z \ge z_\alpha \\ \text{accept } H_0 & \text{if } Z < z_\alpha \end{cases}$$

Left tail alternative

With a left-tail alternative, we should

Choosing α

Delicate issue, a tradeoff between errors of type 1 and 2

P-value

For a given observation which values of α force rejection of H₀ and which force acceptance of H₀?

P-value is the boundary between these regions of $\boldsymbol{\alpha}$

P-value

	For For	$\alpha < P,$ $\alpha > P,$	accept H_0 reject H_0
with a P-value H_0	Practically,		
	If	P<0.01,	reject H_0
	If	P>0.1,	accept H_0

Confidence intervals and testing for the variance

Important for making decisions based on a sample:

-- system reliability

-- quality testing

Variance unbiased estimator

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

the values $(X_i - \bar{X})^2$ are not independent:

- \Box each X_i occurs in the sample mean
- □ CLT can be applied only for large *n*
- \Box distribution of s^2 is not even symmetric

Distribution of variance?

Assumption: $X_1, ..., X_n$ -- independent, normally distributed with variance σ

$$\frac{(n-1)s^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \bar{X}}{\sigma}\right)^2$$

is Chi-square with (n-1) degrees of freedom

Density:

$$f(x) = \frac{1}{2^{\nu/2} \Gamma(\nu/2)} x^{\nu/2 - 1} e^{-x/2}, \quad x > 0,$$

Chi-square distribution

A case of Gamma distribution:

$$Chi-square(\nu) = Gamma(\nu/2, 1/2),$$

Deriving from general formulas for Gamma distribution:

$$E(X) = \nu$$
 and $Var(X) = 2\nu$.

Chi-square distribution

FIGURE 9.12: Chi-square densities with $\nu = 1, 5, 10$, and 30 degrees of freedom. Each distribution is right-skewed. For large ν , it is approximately Normal.

Confidence interval

distribution not symmetrical, so the confidence interval is not of the form $s_{\pm \Delta}$

two values must be read from precomputed lookup tables

Confidence interval

Confidence interval for the variance

these values are precomputed and available from functions in many libraries