Metody probabilistyczne i statystyka, 2022 informatyka algorytmiczna, WIiT PWr 6-Statistical Inference

# **Goal: parameter estimation**

- **population given**
- **distribution is known (e.g. normal distribution)**
- **parameters of the distribution --- to be determined**

#### **Example: λ of the Poisson distribution?**   $\iff$

#### **Solution: λ=E(X), so estimate the mean**

### **contain parameters to be estimated and Seture 20 Text General approach: expressions for mean, variance,… may**

# **Strategic question:**

#### **which function(s) apply to the sample to get a reliable information?**

# **Methods of moments**

The  $k$ -th population moment is defined as

$$
\mu_k = \mathbf{E}(X^k).
$$

#### The  $k$ -th sample moment

$$
m_k = \frac{1}{n} \sum_{i=1}^n X_i^k
$$

### **Central moments**

$$
\mu'_k = \mathbf{E}(X - \mu_1)^k
$$

$$
m'_{k} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^k
$$

# **Method of moments**



In this system:

- concrete values on the right side
- expressions with parameters on the left side

### **Method of moments – example**

Gamma distribution with parameters α, λ:

$$
\begin{cases}\n\mu_1 = E(X) = \alpha/\lambda = m_1 \\
\mu_2' = Var(X) = \alpha/\lambda^2 = m_2'.\n\end{cases}
$$

#### **Example: Pareto distribution**

**well describes the distribution of file sizes sent on the internet**

**Its cdf:** 

 $\sim$ 

$$
F(x) = 1 - \left(\frac{x}{\sigma}\right)^{-\theta} \quad \text{for } x > \sigma.
$$

### **Pareto distribution**

**cdf:** 

$$
F(x) = 1 - \left(\frac{x}{\sigma}\right)^{-\theta} \quad \text{for } x > \sigma.
$$

#### **So the density is:**

$$
f(x) = F'(x) = \frac{\theta}{\sigma} \left(\frac{x}{\sigma}\right)^{-\theta - 1} = \theta \sigma^{\theta} x^{-\theta - 1}
$$

### **Pareto distribution -- computing moments:**

$$
\mu_1 = \mathbf{E}(X) = \int_{\sigma}^{\infty} x f(x) dx = \theta \sigma^{\theta} \int_{\sigma}^{\infty} x^{-\theta} dx
$$

$$
= \left. \theta \sigma^{\theta} \frac{x^{-\theta+1}}{-\theta+1} \right|_{x=\sigma}^{x=\infty} = \frac{\theta \sigma}{\theta-1}, \text{ for } \theta > 1,
$$

$$
\mu_2 = \mathbf{E}(X^2) = \int_{\sigma}^{\infty} x^2 f(x) dx = \theta \sigma^{\theta} \int_{\sigma}^{\infty} x^{-\theta+1} dx = \frac{\theta \sigma^2}{\theta - 2}, \text{ for } \theta > 2.
$$

### **Pareto distribution**

$$
\begin{cases}\n\mu_1 = \frac{\theta \sigma}{\theta - 1} = m_1 \\
\mu_2 = \frac{\theta \sigma^2}{\theta - 2} = m_2\n\end{cases}
$$

so after some calculations:

$$
\hat{\theta} = \sqrt{\frac{m_2}{m_2 - m_1^2}} + 1 \quad \text{and} \quad \hat{\sigma} = \frac{m_1(\hat{\theta} - 1)}{\hat{\theta}}.
$$

# **Method of Maximum Likelihood**

Sample:  $X_1, \ldots, X_n$ Distribution: with unknown parameter λ

**What is the value of λ?**

**Method: find**  $\lambda$  **for which obtaining**  $X_1, ..., X_n$  has the **highest probability**

For a choice of parameter  $\lambda$ :



parameter  $\lambda$  is chosen so that :



#### **Method of Maximum Likelihood –Discrete Case**

**The goal is to maximize:**

$$
P\{X = (X_1, \ldots, X_n)\} = P(X) = P(X_1, \ldots, X_n) = \prod_{i=1}^n P(X_i),
$$

**Trick: it is easier to maximize a sum than a product, so take logarithms:** 

$$
\ln \prod_{i=1}^{n} P(X_i) = \sum_{i=1}^{n} \ln P(X_i)
$$

### **Method of Maximum Likelihood –example Poisson distribution**

$$
P(x)=e^{-\lambda}\frac{\lambda^x}{x!},
$$

**Probability:** 

**logarithms:** 

$$
\ln P(x) = -\lambda + x \ln \lambda - \ln(x!).
$$

**Finding local maximum:** 

**Maximize:** 

 $\ln P(X) = \sum_{i=1}^{n} \left( -\lambda + X_i \ln \lambda \right) + C = -n\lambda + \ln \lambda \sum_{i=1}^{n} X_i + C,$  $\frac{\partial}{\partial \lambda} \ln P(X) = -n + \frac{1}{\lambda} \sum_{i=1}^{n} X_i = 0.$ 

**Solution:** 

$$
\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} X_i = \bar{X}.
$$

#### **Method of Maximum Likelihood – continuous case**



FIGURE 9.1: Probability of observing "almost"  $X = x$ .

#### **Conclusion: take parameters such that f(X) is maximal**

# **Method of Maximum Likelihood – example: exponential density**

$$
density: \quad f(x) = \lambda e^{-\lambda x},
$$

**ln(sample density):**  $\ln f(X) = \sum_{i=1}^{n} \ln (\lambda e^{-\lambda X_i}) = \sum_{i=1}^{n} (\ln \lambda - \lambda X_i) = n \ln \lambda - \lambda \sum_{i=1}^{n} X_i$ .

**Find maximum of ln(***f(X)***):** 

**derivative:**

\n
$$
\frac{\partial}{\partial \lambda} \ln f(X) = \frac{n}{\lambda} - \sum_{i=1}^{n} X_i = 0,
$$
\n**solution:**

\n
$$
\hat{\lambda} = \frac{n}{\sum X_i} = \frac{1}{\bar{X}}.
$$
\nTo be checked:

**what happens for λ =0 and infinity, (the maximum is not always where f'(x)=0 )**

### **Estimating estimator's error**

**estimator is a random variable** 

#### **Question: how concentrated is the estimator value around the true value**

#### **Example: Poisson distribution**

**already we have obtained an estimator for λ:**

 $\sigma = \sqrt{\lambda}$  for the Poisson( $\lambda$ )  $\lambda = \bar{X}$ 

**Approach 1:**

$$
\sigma(\hat{\lambda}) = \sigma(\bar{X}) = \sigma/\sqrt{n} = \sqrt{\lambda/n},
$$

**Then we replace λ by its estimator:** 

$$
s_1(\hat{\lambda}) = \sqrt{\frac{\bar{X}}{n}} = \frac{\sqrt{\sum X_i}}{n}.
$$

#### **Example Poisson distribution**

**Approach 2: We know that**  $\sigma(\bar{X}) = \sigma/\sqrt{n}$ ,

#### $s(\bar{X})=s/\sqrt{n}$ **So put:**

#### **… and use unbiased estimator for s:**

$$
s_2(\hat{\lambda}) = \frac{s}{\sqrt{n}} = \sqrt{\frac{\sum (X_i - \bar{X})^2}{n(n-1)}}.
$$

**Which approach is better?** 

**It depends. Each method is only an estimation … and not the true value.**

# **Confidence interval**

An interval [a, b] is a  $(1 - \alpha)100\%$  confidence interval for the parameter  $\theta$  if it contains the parameter with probability  $(1 - \alpha)$ ,

$$
P\left\{a \leq \theta \leq b\right\} = 1 - \alpha.
$$

The coverage probability  $(1 - \alpha)$  is also called a confidence level.

#### **Remember: we do not know for sure that the true value belongs to the confidence interval!**

# **Situation**

**Illustration of computed confidence intervals** 



### **Confidence interval for normal distribution**



# **Confidence interval for unbiased estimator with normal distribution**

**after normalizing to Standard Normal distribution:**

$$
P\left\{-z_{\alpha/2}\leq \frac{\hat{\theta}-\theta}{\sigma(\hat{\theta})}\leq z_{\alpha/2}\right\}=1-\alpha.
$$

$$
P\left\{\hat{\theta}-z_{\alpha/2}\cdot\sigma(\hat{\theta})\,\leq\,\theta\,\leq\,\hat{\theta}-z_{\alpha/2}\cdot\sigma(\hat{\theta})\right\}=1-\alpha.
$$

**Confidence interval [a,b] where:** 

$$
a = \hat{\theta} - z_{\alpha/2} \cdot \sigma(\hat{\theta})
$$
  

$$
b = \hat{\theta} + z_{\alpha/2} \cdot \sigma(\hat{\theta})
$$

# **Application: confidence level for a sample mean**

#### **it applies for:**

- **sum of (a few) random variables with normal distribution**
- **a large number of samples for any random variable (due to CLT the sum ≈ normal distribution)**

**Recall that:** 

$$
\begin{array}{rcl}\n\mathrm{E}(\bar{X}) & = & \mu \\
\sigma(\bar{X}) & = & \sigma/\sqrt{n}.\n\end{array}
$$

**So the confidence interval with endpoints:** 

$$
\bar{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}
$$

#### **Confidence interval for difference between two means:**



- **1. estimator of mean value:**  $\hat{\theta} = \bar{X} \bar{Y}$ . (it is unbiased)
- **2. if the sample is large, then approximately normal distribution 3. estimate variance:**

$$
\sigma(\hat{\theta}) = \sqrt{\text{Var}(\bar{X} - \bar{Y})} = \sqrt{\text{Var}(\bar{X}) + \text{Var}(\bar{Y})} = \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}.
$$

**4. Confidence interval with endpoints:** 

$$
\bar{X}-\bar{Y}\pm z_{\alpha/2}\sqrt{\frac{\sigma_X^2}{n}+\frac{\sigma_Y^2}{m}}
$$

## **How big should be the sample size?**

**good question,** 

- **if we have to pay for each** *Xi*
- **or getting a new sample is problematic or impossible (like finding the next skeleton of Tyranosaurus to estimate their height)**

### **How big should be the sample size?**

**Confidence interval depends on sample size n and normal distribution:**

$$
\text{margin} = z_{\alpha/2} \cdot \sigma / \sqrt{n}.
$$

#### **So we have a simple rule:**

In order to attain a margin of error  $\Delta$  for estimating a population mean with a confidence level  $(1 - \alpha)$ ,

a sample of size 
$$
n \ge \left(\frac{z_{\alpha/2} \cdot \sigma}{\Delta}\right)^2
$$
 is required.

**so reducing Δ by factor 0.1 increases n by factor 100 (costs!)** 

## **Confidence interval for unknown variance**

#### **Example: population with fraction** *p* **of objects with property** *A*

**Sample proportion:** 
$$
\hat{p} = \frac{\text{number of sampled items from } A}{n}
$$
  
**So:** 
$$
X_i = \begin{cases} 1 & \text{if } i \in A \\ 0 & \text{if } i \notin A \end{cases}
$$

$$
\text{Var}(\hat{p}) = \frac{p(1-p)}{n} \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \text{This is never higher than 0.25}
$$

### **Problem for small sample size**

**Then the estimation of variance is quite poor!**  $(55)$ **What to do??** 

**Recall normalization (for normal distribution):**

$$
Z = \frac{\hat{\theta} - \mathbf{E}(\hat{\theta})}{\sigma(\hat{\theta})} = \frac{\hat{\theta} - \theta}{\sigma(\hat{\theta})},
$$

**For small sample we consider so called T-ratio:** 

$$
t=\frac{\hat{\theta}-\theta}{s(\hat{\theta})}
$$

### **Student's distribution**

**Introduced by W. Gosset (pseudonym Student):** 

$$
\quad \textbf{for T-ratio:} \qquad t = \dfrac{\hat{\theta} - \theta}{s(\hat{\theta})}.
$$

**computed for a sample of size** *n* **for random variable with normal distribution**

**Subtle issue: T-ratio is not normal (the denominator is also an estimator!)** 

#### **True distribution: Student's distribution with "***n-1* **degrees of freedom"**

### **Using Students distribution:**

**For each** *n:* 

**A table with precomputed values for any confidence interval** 

**– then follow the same steps as for normal distribution to get the confidence interval:** 

$$
\bar{X} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}
$$
 Only this has changed

### **Example:** *X-Y* **for random variables** *X,Y* **with variance** *σ***:**

assumption:

\n
$$
\sigma_X^2 = \sigma_Y^2 = \sigma^2.
$$
\nsample variance:

\n
$$
s_p^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2 + \sum_{i=1}^m (Y_i - \bar{Y})^2}{n + m - 2} = \frac{(n - 1)s_X^2 + (m - 1)s_Y^2}{n + m - 2}
$$

Also: 
$$
\sigma(\hat{\theta}) = \sqrt{\text{Var}(\bar{X} - \bar{Y})} = \sqrt{\text{Var}(\bar{X}) + \text{Var}(\bar{Y})} = \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}.
$$

**finally: confidence interval from Student's distribution:**

$$
\bar{X} - \bar{Y} \pm t_{\alpha/2} s_p \sqrt{\frac{1}{n} + \frac{1}{m}}
$$

**easy..**

#### Omitted slide

# **Example: difference between two variables with the different variance:**

**problem: not the Student distribution anymore! no compact and clean solution**

**Approximation (only to see): 1. computing "degree of freedom"** 



**2. Proceed with formulas for Student's distribution with this degree**

$$
\bar{X}-\bar{Y}\pm t_{\alpha/2}\,\sqrt{\frac{s_X^2}{n}+\frac{s_Y^2}{m}}
$$

# **Hypothesis testing**

**Population -- claimed property H<sub>0</sub> -- alternative property H<sub>1</sub> so that both cannot hold at the same time Case 1: unrealistic Data from the whole population available:** 

**one can say which of them is false**

**Case 2: real life Only a sample is available**  $H_0$  or  $H_1$  is true?

### **Example**

H<sub>0</sub>= the proportion of defect chips is 3%  $H_1$  = the proportion of defect chips is  $>3\%$ 

# **Test outcomes**



**Examples: biometric recognition, AI is full of such situations**

**(e.g., H<sub>0</sub>=, face seen by the smartphone is the face of the smartphone owner")**

# **Significance level of a test (poziom istotności)**

**For type 1 error:** 

 $\alpha = P$  {reject  $H_0 \mid H_0$  is true}

### **Power of the test**

**Alternative hypothesis**  $H_A$  **with parameters**  $\theta$ 

 $p(\theta) = P$  {reject  $H_0 | \theta$ ;  $H_A$  is true}.

## **General approach**

- $H_0$  corresponds to some distribution F<sub>0</sub>
- **define statistic T**
- **define acceptance and rejection regions so that probability of values from rejection regions is at most α**



Significance level  $=$   $P\{$  Type I error }  $=$   $P\{\text{ Reject }\mid H_0\}$  $= P\{T \in \mathcal{R} \mid H_0\}$  $\alpha$ .  $=$ 

### **For normal distribution mean 0 – two sided Z test**



 $(a)$  True oided  $7$  test

# **Right tail alternative**

(a) A level  $\alpha$  test with a right-tail alternative should

$$
\left\{\begin{array}{ll} \text{reject } H_0 & \text{if } Z \geq z_\alpha \\ \text{accept } H_0 & \text{if } Z < z_\alpha \end{array}\right.
$$



# **Left tail alternative**

With a left-tail alternative, we should





# **Choosing α**

**Delicate issue, a tradeoff between errors of type 1 and 2**



**P-value**

#### For a given observation which values of  $\alpha$  force rejection of H<sub>0</sub> and which force acceptance of H<sub>0</sub>?

#### **P-value is the boundary between these regions of α**



# **P-value**



# **Confidence intervals and testing for the variance**

Important for making decisions based on a sample:

-- system reliability

-- quality testing

# **Variance unbiased estimator**

$$
s^2=\frac{1}{n-1}\sum_{i=1}^n\big(X_i-\bar{X}\big)^2
$$

the values  $(X_i - \bar{X})^2$  are not independent:

- $\Box$  each  $X_i$  occurs in the sample mean
- CLT can be applied only for large *n*
- $\Box$  distribution of  $s^2$  is not even symmetric

# **Distribution of variance?**

**Assumption:**  $X_1$ , ...,  $X_n$  -- independent, normally distributed with variance σ

$$
\frac{(n-1)s^2}{\sigma^2}=\sum_{i=1}^n\left(\frac{X_i-\bar{X}}{\sigma}\right)^2
$$

is Chi-square with  $(n-1)$  degrees of freedom

**Density:** 

$$
f(x) = \frac{1}{2^{\nu/2} \Gamma(\nu/2)} x^{\nu/2 - 1} e^{-x/2}, \quad x > 0,
$$

# **Chi-square distribution**

#### A case of Gamma distribution:

$$
Chi-square(\nu) = Gamma(\nu/2, 1/2),
$$

Deriving from general formulas for Gamma distribution:

$$
\operatorname{E}(X)=\nu\quad\text{ and }\quad \operatorname{Var}(X)=2\nu.
$$

# **Chi-square distribution**



FIGURE 9.12: Chi-square densities with  $\nu = 1, 5, 10,$  and 30 degrees of freedom. Each distribution is right-skewed. For large  $\nu$ , it is approximately Normal.

# **Confidence interval**

distribution not symmetrical, so the confidence interval is not of the form s∓∆

 $\triangleright$  two values must be read from precomputed lookup tables



# **Confidence interval**

### Confidence interval for the variance



**these values are precomputed and available from functions in many libraries**

6-statistical inference

 $\label{eq:2.1} \frac{1}{2} \sum_{i=1}^n \frac{1}{2} \sum_{j=1}^n \frac{$ 

6-statistical inference

 $\label{eq:2.1} \frac{1}{2} \sum_{i=1}^n \frac{1}{2} \sum_{j=1}^n \frac{$