Metody probabilistyczne i statystyka, 2022 informatyka algorytmiczna, WIiT PWr 7-Statistical Inference 2

chapter 10 from Byron

Testing a distribution

Previously discussed:

learning unknown parameters while distribution was known

Problem:

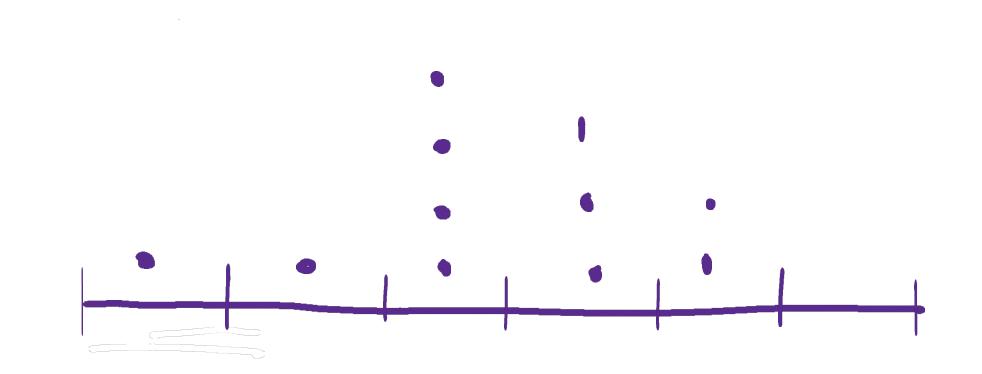
How to check that a source A has probability distribution D?

A crucial question!

- understanding social networks
- anomaly detection in cybersecurity
- correlations (therapy versus mortality rate ...)

Chi Square test

given a data sample and a hypothetic distribution with density f



Chi Square test

Goal: testing whether a source is distributed according to a hypothesis *H*₀

Method:

- **u** split the population to *N* bins
- **u** count how many samples fall into each bin
- \Box compute the expected value for each bin under H_o
- **Calculate statistics (what function?)**
- make a decision

Chi Square test Statistics used: $\chi^2 = \sum_{k=1}^{N} \frac{\{Obs(k) - Exp(k)\}^2}{Exp(k)}.$

Obs(k) = number of samples in bin k Exp(k) = expected number of samples in bin k

One sided statistics: result \leq thereshold \rightarrow accept H_0 result > thereshold \rightarrow reject H_0

rejection region:
$$R = [\chi_{\alpha}^2, +\infty),$$

Chi Square background

Pearson's Theorem

 χ^2 distribution for N bins converges to the chi-square distribution with N-1 degrees of freedom

Rule of thumb: each bin should contain at least 5 samples

Chi Square application example

testing whether a die is unbiased:

- □ 6 bins corresponding to 6 possible outcomes
- **90** samples
- **Exp(i)=90/6=15**
- **Counts observed: 20,15,12,17,9,17**
- **Given Statistics:**

$$\begin{split} \chi^2_{\rm obs} &= \sum_{k=1}^N \frac{\{Obs(k) - Exp(k)\}^2}{Exp(k)} \\ &= \frac{(20 - 15)^2}{15} + \frac{(15 - 15)^2}{15} + \frac{(12 - 15)^2}{15} + \frac{(17 - 15)^2}{15} + \frac{(9 - 15)^2}{15} + \frac{(17 - 15)^2}{15} = 5.2. \end{split}$$

Chi Square application example

interpretation

ν	α , the right-tail probability													
(d.f.)	.999	.995	.99	.975	.95	.90	.80	.20	.10	.05	.025	.01	.005	.001
1 2 3	0.00 0.00 0.02	0.00 0.01 0.07	0.00 0.02 0.11	0.00 0.05 0.22	0.00 0.10 0.35	0.02 0.21 0.58	0.06 0.45 1.01	1.64 3.22 4.64	4.61 6.25	3.84 5.99 7.81	5.02 7.38 9.35	6.63 9.21 11.3	7.88 10.6 12.8	10.8 13.8 16.3
4 5	0.09	0.21 0.41	0.30	$0.48 \\ 0.83$	$0.71 \\ 1.15$	$\frac{1.06}{1.61}$	1.65 2.34	5.99 7.29		9.49 11.1	11.1 12.8	13.3 15.1	$\frac{14.9}{16.7}$	18.5 20.5
	5.2 belongs here													

Goal: test the hypothesis that two parameters of the sample are stochastically independent

Application: eliminating false claims about dependence

example: "eating cabbage influences the cholesterol level in blood"

	B_1	B_2		B_m	row total
A_1	n_{11}	n_{12}	•••	n_{1m}	n_1 .
A_2	n_{21}	n_{22}	•••	n_{2m}	n_2 .
			• • •		
A_k	n_{k1}	n_{k2}	•••	n_{km}	n_k .
column total	n1	n2		nm	n = n

$$\widehat{P}\left\{x \in A_i \cap B_j\right\} = \frac{n_{ij}}{n}, \quad \widehat{P}\left\{x \in A_i\right\} = \sum_{j=1}^m \frac{n_{ij}}{n} = \frac{n_i}{n}, \quad \widehat{P}\left\{x \in B_j\right\} = \sum_{i=1}^k \frac{n_{ij}}{n} = \frac{n_{ij}}{n}.$$

$$\widehat{P}\left\{x \in A_i \cap B_j\right\} = \frac{n_{ij}}{n}, \quad \widehat{P}\left\{x \in A_i\right\} = \sum_{j=1}^m \frac{n_{ij}}{n} = \frac{n_i}{n}, \quad \widehat{P}\left\{x \in B_j\right\} = \sum_{i=1}^k \frac{n_{ij}}{n} = \frac{n_{ij}}{n}.$$

$$\widetilde{P}\left\{x \in A_i \cap B_j\right\} = \left(\frac{n_i}{n}\right) \left(\frac{n_j}{n}\right)$$

$$\widehat{\operatorname{Exp}}(i,j) = n\left(\frac{n_i}{n}\right)\left(\frac{n_{j}}{n}\right) = \frac{(n_i)(n_{j})}{n} \cdot$$

$$\chi_{\text{obs}}^2 = \sum_{i=1}^k \sum_{j=1}^m \frac{\left\{ Obs(i,j) - \widehat{Exp}(i,j) \right\}^2}{\widehat{Exp}(i,j)}.$$

$$\chi_{\text{obs}}^2 = \sum_{i=1}^k \sum_{j=1}^m \frac{\left\{ Obs(i,j) - \widehat{Exp}(i,j) \right\}^2}{\widehat{Exp}(i,j)}.$$

Number of degrees of freedom for Chi-square distribution:

$$km - (k + m - 1) = (k - 1)(m - 1)$$

motivation: k equations for computing n_i . m equations for computing $n_{\cdot,j}$ but only m+k-1 independent

... and look into tables (input to a program)