Metody probabilistyczne i statystyka, 2022 informatyka algorytmiczna, WIiT PWr 5-Statistics, Introduction

Chapter 8 in texbook

Sampling a population

```
Population: u<sub>1</sub>, u<sub>2</sub>, ...
A (numerical) property F(u_i) for each u_i
```
Question: how F behaves in the population

Approach 1: take the whole population and analyze

Approach 2:

- **take only a (random) sample,**
- **analyze sample**
- **attempt to say something about the whole population**

Examples:

• **pharmacy, medical research**

• **system testing**

• **jury in US courts**

Statistics

By *statistics* **we mean any function f of the sample**

Examples:

- **mean (average value)**
- **variance of the sample**
- **median**
- **smallest value**
- **…**

Statistics should be useful (not every f is useful)

Estimators

Θ = f(whole population) population parameter

Θ = estimator of Θ computed over the sample

Θ:= F(sample)

Errors

- **Sampling errors: due to the fact that we see only a small sample and not the whole population**
- **Non-sampling error: faulty way of choosing a sample**

Non-sampling errors: Example of poor sampling

asking for political preferences on Facebook and projection on the whole population

Example of professional approach

e.g. COVID reports of Washington State Health Authority

Compare patients splitting them into groups depending on crucial characteristics such as

age health condition

…

then comparisons within each homogenous group

Important statistics: Mean

Sample mean \overline{X} is the arithmetic average,

$$
\bar{X} = \frac{X_1 + \ldots + X_n}{n}
$$

Bias

An estimator $\hat{\theta}$ is unbiased for a parameter θ if its expectation equals the parameter,

$$
\mathbf{E}(\hat{\theta})=\theta
$$

for all possible values of θ .

Bias of
$$
\hat{\theta}
$$
 is defined as Bias($\hat{\theta}$) = $E(\hat{\theta} - \theta)$. = $\underline{\text{F}}(\hat{\Theta}) - \Theta$

For the mean value:

$$
\mathbf{E}(\bar{X}) = \mathbf{E}\left(\frac{X_1 + \ldots + X_n}{n}\right) = \frac{\mathbf{E}X_1 + \ldots + \mathbf{E}X_n}{n} = \frac{n\mu}{n} = \mu.
$$

Consistency

 \mathcal{A}^{\prime}

The estimator θ is consistent (zgodny) if

$$
P\left\{|\hat{\theta} - \theta| > \varepsilon\right\} \to 0 \text{ as } n \to \infty
$$

(n is the sample size)

Consistency of mean estimator

Recall that

$$
Var(\bar{X}) = Var\left(\frac{X_1 + \dots + X_n}{n}\right) = \frac{Var X_1 + \dots + Var X_n}{n^2} = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}.
$$

 \mathbf{A}

So:

$$
P\left\{|\bar{X} - \mu| > \varepsilon\right\} \leq \frac{\text{Var}(\bar{X})}{\int_{\tilde{X}} \varepsilon^2} = \frac{\sigma^2/n}{\varepsilon^2} \to 0,
$$

Chebyshev inequality

Asymptotic normality

By Central Limit Theorem, the random variable

$$
Z = \frac{\bar{X} - \mathbf{E}\bar{X}}{\text{Std}\bar{X}} = \frac{\bar{X} - \mu}{\sigma\sqrt{n}}
$$

converges to the Standard Normal random variable:

5-introduction to statistics

- <u>- - -</u> -

Sample median

Sample median \hat{M} is a number that is exceeded by at most a half of observations and is preceded by at most a half of observations.

Example:

Sample values: 2345, 3248, 3356, 6788, 12122

Median: 3356 Mean: 5571.8

Population median

Each M such that:

$$
\left\{\begin{array}{rcl} P\left\{X>M\right\} & \leq & 0.5 \\ P\left\{X < M\right\} & \leq & 0.5 \end{array}\right.
$$

Examples

Example: exponential distribution

$$
F(x) = 1 - e^{-\lambda x} \text{ for } x > 0.
$$

$$
F(M)=1-e^{-\lambda M}\!\!=0.5
$$

$$
M = \frac{\ln 2}{\lambda} = \frac{0.6931}{\lambda}.
$$

recall that $E(x)=1/\lambda$

 $\overline{\mathcal{O}}$

 $\mathcal{L}^{\text{max}}_{\text{max}}$ and $\mathcal{L}^{\text{max}}_{\text{max}}$

Examples for discrete binomial distribution

Quantyle (Kwantyl)

A *p*-quantile of a population is such a number x that solves equations

$$
\left\{\begin{array}{rcl} P\left\{X < x\right\} < & p \\ P\left\{X > x\right\} < & 1 - p \end{array}\right.
$$

Percentile (Percentyl)

A γ -percentile is (0.01γ) -quantile.

Kwartyl

Q1=25percentile Q2=50percentile Q3=75percentile

Sample variance

For a sample (X_1, X_2, \ldots, X_n) , a sample variance is defined as

$$
s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}.
$$

Alternative formula for sample variance

$$
s^{2} = \frac{\sum_{i=1}^{n} X_{i}^{2} - n\bar{X}^{2}}{n-1}.
$$

 $\sum (X_i - \bar{X})^2 = \sum X_i^2 - 2\bar{X} \sum X_i + \sum \bar{X}^2 = \sum X_i^2 - 2\bar{X} (n\bar{X}) + n\bar{X}^2 = \sum X_i^2 - n\bar{X}^2.$

 $\mathcal{L}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}$

Estimator s is not biased!

$$
\quad \mathsf{assume}\quad \mu=\,\mathbf{E}(X)=0.
$$

$$
\mathbf{E} X_i^2 = \text{Var} X_i = \sigma^2
$$

$$
\mathbf{E}\bar{X}^2 = \mathrm{Var}\bar{X} = \sigma^2/n.
$$

$$
\mathbf{E}s^2 = \frac{\mathbf{E}\sum X_i^2 - n\,\mathbf{E}\bar{X}^2}{n-1} = \frac{n\sigma^2 - \sigma^2}{n-1} = \sigma^2
$$

If mean value is non-zero:

$$
\mathsf{let} \quad Y_i = X_i - \mu.
$$

$$
s_Y^2 = \frac{\sum (Y_i - \bar{Y})^2}{n-1} = \frac{\sum (X_i + \mu - (\bar{X} - \mu))^2}{n-1} = \frac{\sum (X_i - \bar{X})^2}{n-1} = s_X^2.
$$

$$
\mathbf{E}(s_X^2) = \mathbf{E}(s_Y^2) = \sigma_Y^2 = \sigma_X^2.
$$

Standard error of an estimator

Standard error of an estimator $\hat{\theta}$ is its standard deviation, $\sigma(\hat{\theta}) = \text{Std}(\hat{\theta})$.

Standard error of an estimator

standard error: concerns a sample and an estimator

the standard deviation for the population is something different

The problem of outliers

 ~ 10

Visualizing a sample – histogram

Wrong choice of bin size

Stem+leaf

Sample values: 0.9, 1.5, 1.9, 2.2, 2.4, 2.5, 3.0, 3.4, 3.5, 3.5, 3.6, 3.6, 3.7, 3.8 … 8.2, 8.2, 8.9, 13.9

Stem+leaf for two samples

Box plot example

$$
\bar{X} = 48.2333
$$
; min $X_i = 9$, $\hat{Q}_1 = 34$, $\hat{M} = 42.5$, $\hat{Q}_3 = 59$, max $X_i = 139$.

Example

FIGURE 8.10: Parallel boxplots of internet traffic.