Direct Anonymous Attestation Explained

Jan Camenisch
IBM Research

jca@zurich.ibm.com

July 25, 2007

1 Introduction

Assume that the user a trusted computing platform communicates with a
verifier who wants to be assured that the user indeed uses a platform that
can be trusted. trusted hardware module, This problem is called remote
attestation and discussed in detail in Chapter ??7. As described there, the
problem in the end boils down to the problem that a trusted platform mod-
ule (TPM) needs to prove that the attestation identity key (AIK) it has
generated was indeed generated by an authentic trusted platform module.
In principle, the TPM could use its endorsement key (EK) together with its
certificate on this key to authenticate the AIK. However, the user wants her
privacy protected and therefore requires that the verifier only learns that
she uses a TPM but not which particular one — thus such a solution does
not work as all her transactions would become linkable to each other by the
EK.

Another solution to the problem could be using any standard public
key authentication scheme (or signature scheme): One would generate a se-
cret /public key pair, and then embed the secret key into each TPM. The ver-
ifier and the TPM would then run the authentication protocol. Because all
TPMs use the same key, they are indistinguishable. However, this approach
would never work in practice: as soon as one hardware module (TPM) gets
compromised and the secret key extracted and published, verifiers can no
longer distinguish between real TPMs and fake ones. Therefore, detection
of rogue TPMs needs to be a further requirement.

The solution first developed by TCG uses a trusted third party, the so-
called privacy certification authority (Privacy CA), and works as follows [25].
Each TPM generates an RSA key pair called an Endorsement Key (EK).

The Privacy CA is assumed to know the Endorsement Keys of all (valid)
TPMs. Now, when a TPM needs to authenticate itself to a verifier, it
generates a second RSA key pair called an Attestation Identity Key (AIK),
sends the AIK public key to the Privacy CA, and authenticates this public
key w.r.t. the EK. The Privacy CA will check whether it finds the EK in its
list and, if so, issues a certificate on the TPM’s AIK. The TPM can then
forward this certificate to the verifier and authenticate itself w.r.t. this AIK.
In this solution, there are two possibilities to detect a rogue TPM: 1) If the
EK secret key was extracted from a TPM, distributed, and then detected
and announced as a rogue secret key, the Privacy CA can compute the
corresponding public key and remove it from its list of valid Endorsement
Keys. 2) If the Privacy CA gets many requests that are authorized using
the same Endorsement Key, it might want to reject these requests. The
exact threshold on requests that are allowed before a TPM is tagged rogue
depends of course on the actual environment and applications, and will in
practise probably be determined by some risk-management policy.

This solutions has the obvious drawback that the Privacy CA needs to be
involved in every transaction and thus highly available on the one hand but
still as secure as an ordinary certification authority that normally operates
off-line on the other hand. Moreover, if the Privacy CA and the verifier
collude, or the Privacy CA’s transaction records are revealed to the verifier
by some other means, the verifier will still be able to uniquely identify a
TPM.

For the TPM V1.2 [26] specification a better solution proposed by Brick-
ell, Camenisch and Chen [4] that was adopted. It is called direct anony-
mous attestation (DAA) and draws on techniques that have been developed
for group signatures [15, 13} [I], identity escrow [20], and credential sys-
tems [14, [9]. In fact, the DAA scheme can be seen as a group signature
scheme without the capability to open signatures (or anonymity revocation)
but with a mechanism to detect rogue members (TPMs in our case). More
precisely, we also employ a suitable signature scheme to issue certificates on
a membership public key generated by a TPM. Then, to authenticate as a
group member, or valid TPM, a TPM proves that it possesses a certificate
on a public key for which it also knows the secret key. To allow a verifier
to detect rogue TPMs, the TPM is further required to reveal and prove
correct of a value Ny = ¢f, where f is its secret key and (is a generator of
an algebraic group where computing discrete logarithms is infeasible. As in
the Privacy-CA solution, there are two possibilities for the verifier to detect
a rogue TPM: 1) By comparing Ny with ¢/ for all f ’s that are known to
stem from rogue TPMs. 2) By detecting whether he has seen the same Ny

too many times. Of course, the second method only works if the same (
is used many times. However, ¢ should not be a fixed system parameter
as otherwise the user gains almost no privacy. Instead, ¢ should either be
randomly chosen by the TPM each time when it authenticates itself or every
verifier should use a different ¢ and change it with some frequency. Whether
a verifier allows a TPM to choose a random base (and, if not, how often a
verifier changes its (is again a question of risk management and policies and
is outside the scope of this paper. However, we assume in the following that
in case (is not random, it is derived from the verifier’s name, e.g., using an
appropriate hash function.

Because the TPM is a small chip with limited resources, a requirement
for direct anonymous attestation was that the operations carried out on the
TPM be minimal and, if possible, be outsourced to (software that is run
on) the TPM’s host. Of course, security must be maintained, i.e., a (cor-
rupted) host/software should not be able to authenticate without interacting
with the TPM. However, privacy /anonymity needs only be guaranteed if the
host /software is not corrupted: as the host controls all the communication
of the TPM to the outside, a corrupted host/software can always break
privacy/anonymity by just adding some identifier to each message sent by
the TPM. In fact, the DAA scheme satisfies an even stronger requirement:
when the corrupted software is removed, the privacy/anonymity properties
are restored.

As the DAA scheme employs the Camenisch-Lysyanskaya signature scheme [10]
and the respective discrete logarithms based proofs to prove possession of a
certificate, unforgeability of certificates holds under the strong RSA assump-
tion and privacy and anonymity is guaranteed under the decisional Diffie-
Hellman assumption. Furthermore, DAA uses the Fiat-Shamir heuristic to
turn proofs into signatures and thus its security proofs also assume random
oracles.

As already mentioned, our setting shares many properties with the one of
group signatures [I5], [I3] [I], identity escrow [20], and credential systems [14,
9] and we employ many techniques [1L [9], [10] used in these schemes. However,
unlike those schemes, the privacy/anonymity properties do not require that
the issuer uses so-called safe primes. We achieve this by a special sub-
protocol when issuing credentials. This rids us of the necessity that the
issuer proves that his RSA modulus is a safe-prime product which makes
the setup of those schemes rather inefficient.

This chapter explains the direct anonymous attestation scheme. First,
the chapter provides all the building blocks for DAA: the basics for the uses
proof of knowledge protocols, the Camenisch-Lysyanskaya (CL) signature

scheme, how one can obtain a CL signature on a secret message, and how to
prove knowledge of a CL signature on a secret message. Then, the chapter
describes the DAA scheme itself. Finally, a number of applications of the
DAA are discussed.

2 Preliminaries

2.1 Notation

Let {0,1}¢ denote the set of all binary strings of length £. We often switch
between integers and their representation as binary strings, e.g., we write
{0,1}* for the set [0,2¢ — 1] of integers. Moreover, we often use +{0, 1} to
denote the set [-2¢ + 1,2¢ —1].

2.2 Cryptographic Assumptions and Handy Facts

The protocols discussed in this chapter rely on the strong RSA and the de-
cisional Diffie-Hellman assumptions. We state then briefly for completeness.

Assumption 1 (Strong RSA Assumption). The strong RSA (SRSA) as-
sumption states that it is computational infeasible, on input a random RSA
modulus n and a random element u € Z}, to compute values e > 1 and v
such that v¢ = u (mod n).

The tuple (n,u) generated as above is called an instance of the flexible
RSA problem.

Assumption 2 (DDH Assumption). Let I' be an ¢r-bit prime and p is an
,-bit prime such that p|I'—1. Let~y € Zj. be an element of order p. Then, for
sufficiently large values of ¢r and £,, the distribution {(8,6%,8°, 6%)} is com-
putationally indistinguishable from the distribution {(6,6%, 6%, 6°)}, where &
is a random element from (v), and a, b, and c are random elements from

The following theorem will turn out to be handy in some of our analyses.

Theorem 1. [12] Under the strong RSA assumption, given a modulus n
(distributed as above), along with random elements g,h € (Z%)?, it is hard
to compute an element w € Z} and integers a,b,c such that

w = g?h® (mod n) and ¢ does not divide a or b. (1)

Intuitively, computing such a w and integers a, b, and ¢ such that ¢ does
not divide a and b seems to require knowledge of the group’s order: One
computes w as g*hY for some x and y and then raises both sides to the
power of c. Now if ¢ should not divide a, then one seems to need reducing
xc modulo the order of the group. However, this is not possible as the order
is not known and so it seems impossible to compute such an a that is not
divisible by c.

3 Protocols to Prove Knowledge of and Relations
among Discrete Logarithms

In the following we will use various protocols to prove knowledge of and
relations among discrete logarithms. To describe these protocols, we use
notation introduced by Camenisch and Stadler [I3] for various proofs of
knowledge of discrete logarithms and proofs of the validity of statements
about discrete logarithms. For instance,

PK{(a,B,7) 1y =g°h’ A §=G"h" A (v<a<u)}

denotes a “zero-knowledge Proof of Knowledge of integers o, 3, and ~y such
that y = ¢®hP and § = §*h" holds, with v < a < u,” where y, g, h, 7, 3§,
and h are elements of some groups G = (g) = (h) and G = (§) = (h).
The convention is that Greek letters denote the quantities the knowledge of
which is being proved, while all other parameters are known to the verifier.
More precisely, the property of “proof of knowledge” means that there ex-
ists a knowledge extraction algorithm who can extract the Greek quantities
from a successful prover if given rewinding and reset access to the prover
(cf. Chapter ??). Thus, using this notation, a proof protocol can be de-
scribed by just pointing out its aim while hiding the protocols realization
details.

In the following we will first explain how such protocols can be con-
structed. Unless otherwise stated, we assume a group G = (g) of prime
order q.

3.1 Schnorr’s Identification Scheme

The probably simplest is case is the protocol denoted PK{(«) : y = ¢g“},
where y € G, and is depicted in Figure This protocol is also known
as Schnorr’s identification protocol [24]. As the first step in the protocol,
the prover chooses a random integer r, computes the protocol commitment

Verifier

(9,9,y,x) (9,4,9y)
1 +
Ta €ER Zq
t = gTQ t >~ .
c CER {0, 1}

Sq :=Tq — cx mod ¢

”

t=gy°
i

(yes/no)

Figure 1: The protocol denoted PK{(«) : y = g*}. The prover’s input to
the protocol is (g, q,y,) and the verifier’s input is (g, ¢, y). The prover has
no output; the verifier’s output is either yes or no, depending on whether
or not he accepts the protocols, i.e., whether or not ¢t = g**y° holds.

t := g™ and sends it to the verifier. The verifier replies with a random
protocol challenge c. Next, the prover computes the protocol response s :=
r — cx mod ¢ and sends it to the verifier. Finally, the verifier accepts the
protocol if the verification equation t = g*>y° holds.

The protocol is a proof of knowledge of the discrete logarithm log,y
with cheating probability (knowledge error) of 27%. The protocol is also
zero-knowledge against an honest verifier.

To achieve zero-knowledge against any verifier, one needs to choose k
logarithmic in the security parameter and repeat the protocols sufficiently
many times to make the knowledge error small enough, losing some efficiency
by this repetition. Reasonable parameters seem to be k = 10 and repeat-
ing the protocol 8 times to achieve an overall cheating probability of 2789,
Luckily, one can alternatively use one of the many known constructions to
achieve zero-knowledge that retain efficiency, e.g., [16]. We note that this
discussion holds for all the protocols we consider in this chapter.

From the protocol just discussed, one can derive the Schnorr signature
scheme, denoted SPK{(«) : y = g*}(m), by using the Fiat-Shamir heuristic
[17, 23], i.e., by replacing the verifier by a call to a hash function H and
thus computing the challenge as ¢ = H(g||y|/t||m), where m € {0,1}* is the
message that is signed. The signature of m consists of the pair (s,c). The

verification equation of the signature scheme entails computing ¢ := g¢°y°
and then verifying whether ¢ = H(g||y||f|/m) holds. This signature scheme
can be shown secure in the so-called random oracle model [3].

3.2 Proving Knowledge of a Representation

One generalization of Schnorr’s identification scheme is to use, say, £ bases
g1, ---,9¢ with g; € G. That is, the protocol denoted PK{(a1,...,ap) 1y =
Hle g;"} is a proof of knowledge of the representation of y € G w.r.t. the
bases g;. It is constructed as follows. The inputs of the prover and the verifier
consist of y, g1, ..., gs, the order ¢ of the group, and the system parameter
k. The secret input of the prover consists of z;’s such that y = Hle gt
Thus, each z; corresponds to an «;. Now, to compute the first message
of the protocol, the prover chooses ¢ random integers r,, € Z4, computes
t = Hle g:ai, and sends t to the verifier. The verifier replies with a c
chosen as in the protocol above, i.e., randomly from {0, 1}*. Next, the prover
computes so, 1= 7o, — cx; mod ¢q and sends the resulting s, ..., 54, to the
verifier. The verifier will accept the protocol if the equation ¢t = 3¢ Hle g: i
holds. This protocol can be shown to be a proof of knowledge of values «;
such that y = Hle g;" with knowledge error 27 and to be honest-verifier
zero-knowledge.

3.3 Combining Different Proof Protocols

One can combine different instances of the protocol described so far. The
simplest combination is a protocol denoted

14 i
PK{(ala"wafaﬂlv'”76€’) : Y = 119?I A z = thﬁz}
=1 i=1

with g¢;, hi,y, 2z € G. It is obtained by running the two protocols

e/

l
PK{(a1,...,ap,)y = ng‘ai} and PK{(p1,...,0¢):2z= thz}
i=1

= 1=1

in parallel as sub-protocols as follows. First, the prover computes and sends
to the verifier the commitment messages of both protocols at the same time.
Next, the verifier chooses and sends back a single challenge message, i.e.,
the verifier chooses the same challenge message for both protocols. Finally,
the verifier will accept the overall protocol only if the verification equations
of both (sub-)protocols hold.

In the same way one constructs a protocol that involves several terms
(i.e., representations of several values) by just running the protocol for each
term in parallel and by letting the challenge to be the same for each of these
protocols. So, for instance, the protocol PK{(c, 3,7) :y=¢* A z=h" A
w = g7} is obtained by running the three sub-protocols PK{(«) : y = g“},
PK{(B) : z = hB}, and PK{(y) : w = ¢”} in parallel in as just described.

3.4 Proving Equality of Discrete Logarithms

Another useful combination of the protocols discusses so far is one where, in
addition to prove knowledge of discrete logarithms or representations, the
prover can show that some discrete logarithms are equal. Such protocols
are in principle also obtained from running the basic protocol for each term
in parallel. However, now not only are the challenges the same for each of
these protocols but also some of random choices of the prover as well as
some of the response messages of the protocols needs to be the same. In
general, when we compose protocols for arbitrary terms, the prover is to use
the same random 7, in all the protocols that involve « in their term. Let
us consider the protocol PK{(a, 3) : y = ¢°h® A z = h®} as an example.
The verifier’s and the prover’s common input to the protocol consists of
Y,%,9,h,q and the prover’s secret input consists of x, and xzg such that
y 1= g**h*f and z := h*~. To compute the commitment message, the prover
chooses random 7, and rg from Z, and computes t, := g"*h"? and t, := h"~.
Upon receiving the commitment messages t,, and ., the verifier replies with
a single random challenge message ¢ € {0, 1}*. Next, the prover computes
the response messages as s, := rq + cxq mod q and sg := g + cxg mod q.
Having received s, and sg, the verifier will accept the protocol if the two
verification equations t, = y°g*«h*¢ and t, = z°h°> hold.

Let us explain why the verifier should be convinced that log z equals
the first element in the representation of y w.r.t. g and h. Using standard
rewinding techniques, one can obtain from a successful prover commitment
and response messages for different challenge messages but the same com-
mitment messages, i.e., two tuples (t,,1,¢, sa,s5) and (t,, 1., sp,, 323) with

(ty,t.) = (t,,t,) and ¢ # ¢’. From the verification equations one can thus

conclude that

yc—c’ _ gsi"—sahsb_sﬁ and Zc—c’ _ hsg—sa]
Now we can set Zo = (53, — Sa)(¢c — ¢) 7' mod ¢ and Z5 := (s} — sg)(c —
¢)~! mod ¢q and thus we have

y=g¢"h% and z=h% |

i.e., we see that indeed log;, z equals the first element in the representation
of y w.r.t. g and h.

From what we have now seen, we are able to construct protocols that
fall into the class denoted

Qg (i Afo (i
PK{(al,...aga):ylzHgifl() A ygzngih()/\
i€ly 1€l

Xfp,, (0
. /\ yzy: H gl ly } ,

Z'EIgy
where

o lq, {4, and /, are parameters denoting the number of secrets «;, of
bases g;, and of elements y;, respectively,

e the y;’s and g;’s can be arbitrary elements of G and do not necessarily
be distinct or can be a product of other (given) elements, e.g., y3 =

?J59§’ /Y2,

e the sets I; define which bases are used for the j-th term and the
functions f; define which secret o, is used for a particular base in the
term.

The protocol is depicted in Figure We note that the protocol has the
property that from a successful prover one can extract values ag,...,ay
such that the equations

Qf1(3) Qo (i) e, (1)
p=[1a"" w=1]s"" - vw=][a"

i€l icly i€y,

o

all hold. That is, it is an honest-verifier zero-knowledge proof of knowledge
of the values a1, ..., o, with knowledge error 27k,

Let us finally consider some example instances of this general protocol.
The protocol denoted PK{(c, 3) : y1 = g Aya = g% Ays = y?} proves that
log, y3 is the product of log, y1 and log, y2, the protocol denoted PK{(«) :
Y1 = g% Ay2 = y{'} proves that log, y2 = (log, y1)?, and the protocol denoted
PK{(a, B) : g = y*hP} proves that the first element of the representation of
y that the prover knows w.r.t. g and h is non-zero, provided that the prover
is not privy to loggh (in case the prover knows logyh, he is able to compute
q different representations of y w.r.t. g and h, otherwise he can only know
one).

Verifier

<917-'-7g€g7y17-~-7y€y7 (glv---agfgaylw--ay@yv

Ila"'alﬂyaflw"affya Ila"'a-[fyaflw"affya

xlv"'ame,)UQ) q)

¥ {
Tays--+sTay, €R ZLq
For j=1,...,4, do:
Tag. () Typy ey by
by, = Hielj 9; e .
c CER {071}

Sq; = Ta; — cx; mod q Sars-- s Say,
For j =1,...,¢, check:
? o)
— ,,C J
ty; = Y; Hiefj 9i

1
(yes/no)

Figure 2: The protocol denoted PK{(a1, ...y,) : y1 = [Licy, g;{fl”) A ya =

afgy (4)

o (i)
Hie[z 9; " N Ny, :Hielgy 9; }

3.5 The Schnorr Protocol Modulo a Composite.

So far we have considered proof protocols for a group of prime order where
the order is known to both the prover and the verifier. However, often one
would like to use these kind of protocols in groups where the order is not
known to all parties as is for instance the case in RSA-groups. RSA groups
are subgroups of Z;, where n is the product of two primes. Thus, if one
does not know the factorization of n, one does in general not know the order
of a subgroup generated by a random element of Z.

In particular, let n be the product of two safe primes, i.e., primes p
and ¢ such that p’ = (p —1)/2 and ¢ = (¢ — 1)/2 are also primes. Let
g be a generator of the quadratic residues modulo n (so, g will have order
p'q"). In this case, knowing the order p'q’ of g is equivalent to knowing
the factorization of n. Let y = ¢g* with 2 € {0,1}* for some £. Now
consider the protocol denoted PK{(«) : y = ¢g“ (mod n)}, where at least
the prover is assumed not to be privy to the factorization of n. The prover
and verifier’'s common inputs are (y,g,n,¥,) and the prover’s additional

10

input is x = log, y, where £, = [logyn] (i.e., the length of n in bits). We
may assume that = € [0,n]. The protocol is as follows.

1. The prover chooses uniformly at random r, €g {0, 1} ¢+ com-
putes t, := g" mod n, and sends ¢ to the verifier.

2. The verifier chooses a random ¢ €r {0,1}% and sends that to the
prover.

3. The prover replies with s, := r, — zc.

°

4. The verifier checks whether t, = y°¢g°* (mod n) holds.

The difference to the protocol in the case the order of the group (g)
is known is that here, as she does not know the order of the group, the
prover can no longer choose r, randomly from the integers modulo this
order and can no longer reduce s, modulo this order. So, the prover needs to
choose r, some how differently such that nevertheless s, and ¢, do not reveal
information about z, i.e., such that the protocol remains zero-knowledge.
Thus if z € [0,n] and the prover chooses 7o, €g {0, 1} +Hfe then, for any
¢ € {0,1}% and sufficiently large £y (e.g., 80), the value s, := 74 — zc is
distributed statistically close to the uniform distribution over {0, 1} +fette .
Also, the value t, := ¢" mod n is distributed statistically close to uniform
over (g). Therefore, provided that y € (g), the protocol is statistical honest-
verifier zero-knowledge for sufficiently large 4 (e.g., & = 80).

Now, this protocol is only a proof of knowledge of log, y if £, equals 1 and
if repeated sufficiently many, say k, times. Let us investigate this. Assume
we are given a prover that can successfully run the protocol for given y, g,
and n. By standard rewinding techniques, one can extract two triples (¢, c, s)
and (¢',¢,s') from the prover such that t = ¢/, ¢ # ¢, and t = y°g* = y© ¢°
(mod n) holds. W.l.o.g. we may assume that ¢’ > c. From the last equation
we can derive that y g** (mod n).

If £, = 1, we must have ¢ = 1 and ¢ = 0 and hence y = ¢°=* (mod n),
i.e., s — s’ is a discrete logarithm of y to the base g and hence the protocol
is indeed a proof of knowledge.

If £. > 1, we are stuck with the equation y
we seem to need to compute a (¢’ — ¢)-th root of g%~
assumed to be hard without knowledge of g’s order. Unfortunately, Theo-
rem [I] provides a way out. That is, under the strong RSA assumption, we
will have that (¢’ —¢)|(s — §'). Let u be such that (¢’ —c¢)u = (s — s’). Then

= bg" (mod n) for some b such that b€ = 1 (mod n). Assuming that

c—c —

¢ = ¢*=% (mod n), ie.,

s" modulo n which is

11

2¢ < min(p’, ¢'), it must be that b = +1 or ged(b=+ 1, n) splits n (which again
would counter the strong RSA assumption). Of course, if both y and g are
quadratic residues, then y = ¢* (mod n).

The reader might now think that the protocol is therefore a proof of
knowledge under the strong RSA assumption for ¢, > 1. Unfortunately
this is not the case. Let us expand. The definition of a proof of knowledge
(cf. Chapter ?7), requires that the inputs n, g, and y be fixed, i.e., that
the knowledge extractor works for any prover that is successful for a given
input n, g, and y. However, the above argument only works for n chosen at
random. For instance, it does not work if the prover knew the factorization
of n as he then could compute ¢, ¢, s, and s’ such that (¢ —¢) 1 (s — &)
(for instance by adding a multiple of the order of ¢ to s). Now, if n is fixed,
there always exists a prover who has the factorization encoded into herself
and thus she could successfully run the protocol but the knowledge extractor
cannot extract a witness. In order words, the protocol only has the proof
of knowledge property for random n which contradicts the requirement of
a proof of knowledge that the witness can be extracted for any given n.
Nevertheless, the protocol is still useful as a building block, i.e., one only
need to take into account the probability spaces of n, g, and y. That is,
one has to consider the overall system of which the protocol is part and
cannot just consider the protocol by itself as one could if it was a true
proof of knowledge. Despite of all of this, we denote this protocol also as
PK{(«) : y = £¢9% (mod n)} or PK{(«) : y = g (mod n)}, depending on
whether the verifier is assured that y is a quadratic residue or not.

3.6 Proving that a Secret Lies in a Given Interval

One property of the protocol just described that is handy in many cases is
the fact that the prover cannot reduce the response messages modulo the
order of the group is to argue about the bit-length of the secret known to
the prover. Let z € {0, 1}% for some £, and let y := ¢® mod n, with g and
n as before. Now consider the following modification of the protocol (the
inputs to the prover and the verifier remain unchanged except that both
parties are further given /).

1. The prover chooses uniform at random 7, € {0, 1}¢=++te computes
ty := ¢" mod n, and sends ¢ to the verifier.

2. The verifier chooses a random ¢ €r {0,1}% and sends that to the
prover.

12

3. The prover replies with s, := r, — zc.

4. The verifier checks whether
? ?
t, =y°g* (modn) and s, € £{0,1}f=Fletlat]

hold.

The modification is that the prover chooses r, from a different interval and
that the verifier also checks that s, takes at most £, + ¢. + {5 + 1 bits.

The analysis of this protocols is of course almost identical to the original
one, except that we are now considering the bit-lengths of s, and 7. First,
it is not difficult to see that the protocol remains statistical honest-verifier
zero-knowledge. Above we have argued that under the strong RSA assump-
tion, one can extract a value u from a successful prover such that y = £g"
(mod n), where with u = (s—s")/(¢’—¢). Now because (¢’ —c¢) divides (s—s')
and as (s — §') € £{0,1}feFeto2 we must have u € {0, 1}fatletlo+2,
In other words, the discrete logarithm known to the prover has at most
Uy + 0.+ Lz + 2 bits (neglecting its sign). Note that this length is indepen-
dent of the length of the modulus n. Also note that in fact the length of
the prover’s secret must be shorter, (only about ¢, bits) for the prover to be
able to run the protocol successfully with high probability; so the protocol
is not an argument of the exact length of the secret. However, in many cases
this is good enough. We denote this modified protocol as PK{(«) : y = g“
(mod n) A a€ £{0,1}fattetltat2y

The protocol can be also be used to prove that the secret known to
the prover lies in any interval, say, in [a,b]. To this end note that [a,b] =

[axb — boa adb 4 b221 Thys the protocol denoted

. y a b—a b—a

is an argument that the prover knows a value x such that = € [a,b] and
y = ¢® (mod n). As before, the actual value = given as input to the prover

at+b b—a a+b
D) +

must lie in a smaller interval, namely in the interval | SoletloTE 2

a+b]
9.9lctg+21"

It is straightforward to extent and generalize the protocols just discussed
in the same way as the protocols we considered for groups of known order.
Moreover, the protocols over groups of known order and those over groups
of unknown order can be combined. Let us consider a simple combination as
an example; the constructions of general combinations is left as an exercise
to the reader.

13

Assume a group G' = (g) of order a prime ¢, and let n be an RSA modulus
as above, hq be an element from Z, ho be an element from (hq), and y = ¢g*
with o € {0,1}% for some integer £, < (logyq) — 1 — ({e + £z + 2). Finally,
assume that the prover is not privy to n’s factorization. Now consider the
following protocol. The common input to the prover and the verifier consists
of q, g, y, n, h1, ho, and a and the secret input to the prover consists of x.

1. First, the prover chooses a random r €pg [0,n2€‘2’ |, computes z :=
hihi mod n, and sends z to the verifier.

2. Next, the prover and the verifier run the protocol denoted:

PK{(a,3) 1y =g" N z = h?hg (mod n) A a € +£{0,1}f=ttettat2)
i.e., they perform the following steps.

o _ g’ J

(a) The prover chooses a random r, € [—a2’t*e @2f+%2] and a
random rg € {0,1}n*t2e] computes t, = g™ and t, :=
hi® h;ﬁ mod n and sends ¢, and t, to the verifier.

(b) The verifier chooses a random ¢ €5 {0, 1} and sends that to the
prover.

¢) The prover replies with s, := 7, — xc and sg := rg — rc.
B B
(d) The verifier checks whether
? ¢ Sa 2 e Sa 1,58
ty =Yg’ t, = 2°hij*hy" (mod n) , and
So é :|:{0 1}€z+€c+€z+1
hold.

Let us analyze this protocol. From our considerations above we know
that one can extract from a successful prover values (ty,t.,c, Sq,53) and
(ty: s €'y 50, 85) with (ty,t.) = (t,,t.) and ¢ # ¢’. From the verification
equations we have that

—Sa

o~

L ’_ sls—sg _
2°7¢ = hi“ S“hZﬁ (mod n) Yy =g°

(54— 5a) € £{0, 1}t tet2

, and

From the first of these equations we can conclude that under the Strong
RSA assumption (¢ — ') divides (s, — sq), i.e., there exists some u such
that (s, — sa) = u(c —). Thus, we can rewrite the second equation as

14

ye=¢ = gc=) Now, as y € (g) (which we can test as g has prime order g),
we must have y = g*. From the third of the equations we can further derive
that u € £{0,1}%HlFte+2 Thus the verifier is assured that the prover
knows log,y which lies in +{0, 1}fatlettat2 j o the protocol is a proof
that a discrete logarithm in a group of known order lies in some interval. Of
course this makes sense only if the group’s order is larger than 2t +tetto+3,

As the basic protocol PK{(«) : y = +£¢% (mod n)} in group of unknown
order, the protocol just described in not a proof of knowledge either as its
analysis depends on the strong RSA assumption and thus is correct only
if the prover can execute the protocol for a random n. As the goal of the
protocol was to prove that log,y lies in some interval, we do not need to
fix n but could have the verifier generate n and send it to the prover before
running the protocol. The protocol augmented like this would indeed be a
true proof of knowledge. For the protocol to be zero-knowledge, the prover
needs to be ensured that hy € (h;) as otherwise z could leak information
about . Unfortunately, the only way known to prove that hy € (h1) holds is
not very efficient, i.e., is to have the verifier run the protocol PK{(«a) : hy =
+h$ (mod n)} many times with binary challenges (cf. above). However, in
some cases this proof can be delegated to a set-up phase and thus needs to
be done only once and for all, or sometimes n, hq, and ho can be provided
by a trusted third party.

The protocol just discussed can be extended to three (or more) different
groups, i.e., groups G1 = (g1) and Go = (g2) of known order ¢; and g2 to-
gether with a RSA sub-group of unknown order as to show that two discrete
logarithms in G; and Go are the same. lLe., let y; = g and y» = g5 with
r € £{0,1}% and ¢, < (logy min{q1,q2}) — 1 — (b¢ + £z +2), and z = h¥h}
(mod n) for some random r. Then, the protocol

PK{(O(,B) Al Zg? AN y2:g‘2)‘ A
z = h‘fhg (mod n) A« £{0,1}faHlettot2y

will convince a verifier that log, y1 = logy, y1 where we define log,y to
be the integer x for which y = ¢* and that closed to 0, i.e., log,y lies in
[—q/2,q/2]. Of course, the protocol can also be generalized to representa-
tions, i.e., to a protocol showing that an element of a representation lies in
a certain interval.

3.7 The Camenisch-Lysyanskaya Signature Scheme

Recall that the idea underlying the direct anonymous attestation scheme is
that a TPM gets from a attester a signature on a secret message and then

15

later proves knowledge of such a signature on a secret message. While it is
known that the latter statement can always be proven, such a proof would
in general not be very efficient.

Luckily, Camenisch-Lysyanskaya provide a signature scheme [11} 22].
that, unlike most signature schemes, is particularly suited for our purposes:
it allows one to apply the proof efficient discrete logarithm proof protocols
just discussed to prove knowledge of a signature and to retrieve signatures
on secret messages [11], 22].

We recall this signature scheme (the CL signature scheme) and the re-
lated protocols here.

Key generation. On input ¢,, choose an ¢,-bit RSA modulus n such that
n=npq,p=2p+1,q=2q¢ +1, where p, q, p, and ¢ are primes. Choose,
uniformly at random, Ry,...,Rr—1,5,Z € QR,,. Output the public key
(n,Ro,...,Rr—1,S5,7Z) and the secret key p.

Message space. Let £,, be a parameter. The message space is the set
{(m07 s 7mL—1) tm; € :l:{oa 1}67”} :

Signing algorithm. On input my, ..., mp_1 , choose a random prime number
e of length ¢, > ¢,,+2, and a random number v of length ¢, = £, + £, +4;,
where £, is a security parameter. Compute the value A such that

7 1/e
A= — I mod n .
Ry ...R; “{SY

The signature on the message (myg,..., mp_1) consists of (e, A, v).

Verification algorithm. To verify that the tuple (e, A,v) is a signature on
message (my, ..., mrp—1), check that

Z=A°Ry°...R;"['SY (modn) , m; € £{0,1}" | and
2 > e > bl

all holds.

Theorem 2 ([I1]). The signature scheme is secure against adaptive chosen
message attacks [19] under the strong RSA assumption.

The original scheme considered messages in the interval [0,2 — 1] .
Here, however, we allow messages to be from [—2¢m + 1,2 — 1]. The only
consequence of this is that we need to require that £, > £,, + 2 holds instead
of by > ¥, + 1.

16

3.8 Obtaining a Camenisch-Lysyanskaya Signature on a Se-
cret Message

Camenisch and Lysyanskaya also provided a protocol that allows a user
to obtain a signature on messages that the signer does not learn. The
protocol we present here is a somewhat more efficient version than the one by
Camenisch and Lysyanskaya [11] as it incorporates improvements presented
by Brickell, Camenisch, and Chen [4] and by Camenisch and Groth [§].

Let (n,Ry,...,Rr—1,S5,Z) be the public key of the signer such that
Ro,...,Ri—1,Z € (S) is assured (cf. Section [4.4] for the latter).

A signature on messages mo,...,mg_1 = {0, 1}Z/m, such that only the
messages mys,...myp_1 are known to the signer S, can be obtained by a
signature receiver R as follows. The parameter ¢/, should be at most £, —
lg— Uy —2. The reason for this is that the protocols that the user (signature
receiver) can apply to convince the signer that the messages lie in +{0, l}em
has a fudge factor of 22+ +2 a5 we have explained (cf. .

The protocols is as follows. The input of the signature receiver R consists
of the signer &’s public key and all its messages. The input of S consists of
its secret and public keys and of the messages my/,...mr_1. The parties
execute the following steps.

1. R chooses a random v’ €g {0,1}+ computes the element U :=
s Hfzal R mod n, and sends U to signer.
2. R executes as prover to verifier S the following protocol

-1
PK{(po, ..., pr—1,V/) : U=+5" H Rl (mod n) A
=0
Hos -+ -y PL—1 € :l:{07 1}€m} .
3. S chooses © € {0,1}%~! and a prime e € [2~! +1,2% — 1], com-
putes v == + 2%~ 1 and

Z 1/e
A=
GsnEL)

and sends (A4, e,v") to R.

mod n

4. To convince R that A was correctly computed, S as prover runs the
protocol

Z

1
mod n
Usv [T, R;“i) ()}

PK{(6): A==%(

17

with R as verifier.

5. R checks whether e is a prime that lies in [2%~! +1,2% — 1]. R stores
(A e,v:=v" 4+ v") as signature on the messages mo,...mp_1.

Note that R is not privy to the factorization of n and Ry, ..., Rp—1 € (S)
and hence the value U is a statistically hiding and computationally binding
commitment to the messages my,...mp 1 (cf., e.g., []).

The proof in Step 2 will convince S that R “knows” the messages com-
mitted by U and thus the values computed in Step 3 will indeed be a valid
CL-signature and not just reveal an e-th root of some value R concocted.
Finally, the proof in Step 4 will convince R that S computed the value A
correctly, in particular that A € (S). The latter is important to guarantee
privacy when proving possession of a signature as we will see in the next
section. Let us argue why it is true. From the properties of the PK protocol,
we know that one can extract values ¢ and d from a successful prover such
that

VA
US” [Ty Ry

A
SUTIy Ry

A° = ()dz()d (mod n)
where c is the difference of two challenge messages and hence must lies in
€ {0, 1}**. Furthermore, we know that

L-1
Z = A°SY H R (mod n)
=0

holds and that e is a prime. Furthermore, there must exits integers a; and
ay such that ea; + caa =1 as ¢ { e (provided that ¢ is smaller than e which
can easily be ensured and is usually satisfied because of the requirement
that one be able to prove that e is sufficiently large). Thus we have

Z
A = Ametcaz — (m)aﬁrazd (mod TL) (2)
S Tise /™
and therefore, as the signer has during the key set-up also ensured us that
Z,R € (S), the element A must lie in the group generated by S.

Security Considerations. Using the protocol just described to issue sig-
nature might render the signature scheme insecure as the signer does no
longer learn the signature he signed. However, in the security proof the
Camenisch-Lysyanskaya signature scheme the messages need to be known

18

to reduce the security of the signature scheme to the strong RSA assumption.
Therefore, when proving security of the signature schemes together with this
protocol to issue signatures on hidden messages, one needs to extract the
hidden messages from the signature receiver. The only known means to
achieve this with this protocol is via rewinding. Such rewinding, however,
can only be successfully done if different instances of the protocol are run
sequentially. That is, the signature scheme only retains security of the signer
does not run the protocol concurrently with many signature receivers. If the
signer needs to be able to run such an issuing protocol concurrently, then the
protocol needs to be modified such that (in the security proof) one is able to
extract the secret messages without rewinding. One means to achieve this
is to use verifiable encryption as follows (cf. [12]). Assume that a public key
of a suitable encryption scheme is made available by an trusted third party
such that the corresponding secret key is not known. Then, when a signa-
ture receiver want to obtain a signature on a hidden message, we require
that she also encrypt the message under that public key and prove that the
message encrypted is the one contained in the value U. This can efficiently
be achieved with the Camenisch-Shoup [12] encryption scheme. Now, the
idea is that when proving security, the reduction algorithm controls the third
party, thus will know the secret key, and is able to get hold on the secret
messages just by decrypting. As this requires no longer any rewinding, the
signing protocol can be run concurrently with many signature receivers. An
alternative method is due to Fischlin [I§] who recently presented a trans-
formation for turning any standard proof of knowledge (or X-protocol) into
a non-interactive proof in the random oracle model that supports an online
extractor (i.e., requires no rewinding for extraction).

3.9 Proving Possession of a Signature

Another protocol that we will need is one to convince a verifier of ones posses-
sion of a signature on some messages. Again, this protocol is based on one by
Camenisch and Lysyanskaya [11] but incorporates improvements presented
by Brickell, Camenisch, and Chen [4] and by Camenisch and Groth [§].

We demonstrate the protocol here for the case where the messages m;
for ¢ € I,. are revealed to the verifier, the messages m; for ¢ € I. are hidden
from the verifier but of which she receives a commitment, and finally no
information whatsoever about the messages m; for i € I}, is revealed to the
verifier.

Let us discuss the ideas underlying the protocol before we give its details.
To this end, consider a signature (A,e,v) on a single message m. The

19

signature is valid if we have that
Z=R1S°A° (modn), 2% l<e<2% . and me +{0,1} .

Of course we want to use the protocols described in Section [B.5] Now, if A
was a public value, then we could use these protocols to argue knowledge of a
representation of Z w.r.t. Ry, .S, and A and that the first and third elements
of this representation lie in the required intervals. Making A public, how-
ever, would leak information about the signature! Taking a closer look at
Camenisch-Lysyanskaya signatures reveals that one can, however, randomize
A: Given a signature (A4, e, v), the tuple (A’ :== AS™" mod n,e, v’ := v+er),
is also a valid signature on the message m for any 7, as can easily be ver-
ified [§]. Now, provided that A € (S) and that r is chosen uniformly at
random from {0,1}*%2 the values A’ is distributed statistically close to
uniform over Z; and hence can be revealed without leaking information
about the signature (A, e,v). While the second requirement is easy to guar-
antee by selecting r correctly, it is in general much harder to check that
A € (S) holds as the order of S is not known. Therefore, we needed the
signer to prove this fact in the protocol for issuing a signature described in
the previous section.

Assuming this, to convince a verifier that one possesses a signature on
some message by the signer, one can randomize that signature as just shown,
send A’ to the verifier and then run the protocol

PK{(e,v/, i) : Z=+RIA®S” (modn) A pe=+{0,1}" A
ee 2t 1,20 — 1]}

with the verifier. However, as we have seen before, the prover can run
successfully a protocol proving that u € £{0,1} and e € [2f~1 +1, 2% —1]
holds only if the corresponding secrets m and e known to the prover actually
lie in smaller intervals. We therefore need to require that the message m lie
in {0,1}%, as for the protocol in the previous paragraph. Now to enable
the prover to show that ¢ € [25671 + 1,20 — 1], the signer should choose e
from [20— — 20 41,201 4 2% _ 1] with ¢, < , — {g — {3 — 3. This will
allow the prover to show that e — 2%~ lies in {0, 1}*2++2 which implies
e € [2f71 4-1,2% —1]. So, we get the protocol

PK{(e,V,) : ZA2T = :I:RgA'aS”, (mod n) A
pe£{0,1}m A e {0, 1} etle bty

20

Similarly to the protocol to obtain a signature, we now generalize the pro-
tocol just discussed to one where the user R possesses a signatures on several
messages and wants to convince a verifier that she indeed does so while re-
vealing some of the messages and keeping others secret. More concretely, as-
sume that the user R possesses a signature (A, e, v) on messages my, ..., mr.
Let I, and I. be sets of indices defining the messages {m;|i € I;} the user
wants to hide and the messages {m;|i € I.} to which she want to send to
verifier commitments. All other messages, the user is ready to reveal to the
verifier. This leads to the following protocol, that requires as additional
input parameters for a commitment scheme: Let G = (go) be a group of
prime order ¢ > 2 and let ¢g1,. .., gr, be elements from G.

1. R chooses ' € {0,1}*% computes C := g [lics, i, and sends C
toVand {m; | i ¢ I.UI}.

2. R chooses r € {0, 1}t computes A’ := AS”, and sends A’ to V.

3. Finally, R as prover executes the protocol
PK{(e,0,p/,{pili € I.UIy}) :

ZA2! H R;™ = +A"S” H R (mod n) A
it 1l iel.ul,

C=gf [T g A pi€{o,1}mtlotint2 (i e .U T,) A
i€l

= :I:{O, 1}£é+fg+fﬁ+l}
with V as verifier.
4. The verifier also checks that m; € {0, 1} for i ¢ I. U Iy,.

Having the user (prover) to reveal only some of the messages and to
send the verifier commitments to other messages will allow one to use this
protocol as a sub-protocol. The messages can for instance be used to encode
attributes into a credentials. Examples of such attributes include which kind
of resource the user is allowed to access, the user’s identity, the expiration
date of the certificate, etc. Now, depending on the application and to pro-
tect the user’s privacy, not all of these attributes should be revealed. For
instance, the verifier only sees the message encoding the kind of resource
the credential allows the user to access, but only get commitments to the

21

expiration date and possibly also to the identity. Using these commitments,
the user can then run a separate proof with the verifier showing that, for in-
stance, the credential has not expired yet, or, if required by the application,
the user could also provide the verifier with an verifiable encryption [7, 12] of
an attribute under a trusted third party’s public key. For the latter, the user
would first provide the verifier with a commitment of that attribute, prove
that the commitment indeed contains the attribute found in the certificate,
and the will use a verifiable encryption protocols to verifiably encrypt the
committed value. In case the attribute is the user’s identity, such a ver-
ifiable encryption could allow the trusted third party to revoke the user’s
anonymity, e.g., in case she misuses the anonymous access to the resource.

3.10 Guaranteeing Privacy to the User

In both protocols just described we have made some assumptions about the
issuer’s public key in order to guarantee privacy to the user. That is, in
the protocol to issue a CL signature on hidden messages, we have assumed
that Ro,...,Rp—1 € (S) as requirement that U is a statistically hiding
commitments. In the protocol, to prove knowledge of a CL signature we
needed to ensure that A € (S) which in turn required that Z € (S). Let us
therefore discuss how the signer can prove that his public key meets these
requirements.

While for some groups (e.g., suitable subgroups of Z, where p is a
prime)these requirements can be easily tested by raising the elements by
raising the elements to this orders and checking whether the result is the
identity element. In case the order should not be revealed, the only known
way is to have the issuer prove knowledge of logg Z. As we have discussed
above, such a proof does only work with binary challenges and therefore
needs to be repeated a sufficient number of times. The issuer would need to
do that for Z as well as for all values R;. At at first glance this seems some-
what inefficient. However, first of all, using the non-interactive versions for
the proof protocols, the issuer would need to generate this proof only once.
Moreover, all these protocols use the same base S and hence one can em-
ploy a number of techniques to speed-up the generation and the verification
of this proofs such as precomputation and also so-called batch verification
techniques [2]. Also, one could delegate the verification of the public key’s
correctness to the authority (CA) certifying the issuer’s public key or other
suitable trusted parties.

22

4 The Direct Anonymous Attestation Scheme (DAA)

4.1 Informal Model of Direct Anonymous Attestation

This section informally discusses the functional and security requirements
for direct anonymous attestation. For a formal model we refer the reader
to [].

The participants of the scheme are a number of platforms, each consisting
of a host and a TPM, an attester, and a number of verifiers. Let us clarify
our use of the terms platform, host, and TPM. Each platform contains a
TPM. By host we designate the platform excluding the TPM. We assume
that each TPM possesses a so-called endorsement key pair and certificate,
i.e., an RSA key pair the public key of which has being certified by the
TPM’s manufacturer.

The scheme consists of three procedures: the DAA key generation run
by the attester; the DAA-Join protocol executed between a host, a TPM,
and an attester; and the DAA-Sign protocols run between a host, a TPM,
and a verifier.

The DAA key generation generates the public parameters of the scheme
and the attester’s DAA secret key.

The DA A-Join protocol allows a platform to obtain attestation provided
it has access to (contains) a certified (endorsed) TPM. The common inputs
for this protocol consist of the attester’s public key and the TPM’s certified
endorsement key. The attester has as additional input it’s DAA secret key
and the TPM it’s endorsement secret key. As a result of the protocol the
host and the TPM together obtain attestation.

The DAA-Sign protocol allows a platform that has obtained attestation
to convince a verifier of this fact. The parties inputs for this protocol are
the DA A public parameters and, if the verifier decides so, the verifier’s base-
name. The TPM and the host have as secret inputs their respective outputs
of the DA A-Join protocol.

The security requirements are as follows:

Unforgeability. A TPM and host can successfully run the DAA-Sign pro-
tocol with a verifier only if they had at some earlier time successfully
run the DAA-Join protocol which in turn is only possible if the TPM
possesses a certified endorsement key.

Anonymity. The information the verifier obtains from the DAA-Sign pro-
tocol is not sufficient to link the transaction to an instance of the
DAA-Join or an other instance of the DAA-Sign protocol. The latter

23

needs to hold only if the DAA-Sign protocol were run with different
base-names.

Rogue Tagging. Given all DAA related (secret) information of a (rogue)
TPM, the verifier can tell whether or not he runs the DAA-Sign pro-
tocol with a party using this rogue information.

4.2 High-Level Description.

The basic idea underlying the direct anonymous attestation scheme is similar
to the one of the Camenisch-Lysyanskaya anonymous credential system [9]
11, 22]: A trusted hardware module (TPM) chooses a secret “message”
f, obtains a Camenisch-Lysyanskaya (CL) signature (aka attestation) on
it from the attester (issuer) via a secure two-party protocol, and then can
convince a verifier that it got attestation anonymously by proving knowledge
of an attestation (i.e., of a signature on a secret message). To allow the
verifier to recognize rogue TPMs, the TPM must also provide a pseudonym
Ny and a proof that the pseudonym is formed correctly, i.e., that it is derived
from the TPM’s secret message f contained in the attestation and a base
determined by the verifier. We discuss different ways to handle rogue TPMs
later.

Before providing the actual protocols, we first expand on the basic idea
and explain some implementation details. First, for efficiency reasons, we
split the TPM’s secret f into two £¢-bit messages and denote these (secret)
messages by fo and f; (instead of my and m; as done in the protocols
presented in the preceding section). This split allows the issuer to choose
smaller primes e as their size depends on the size of the messages that get
signed - this will save the issuer/attester considerable computations as the
generation of a prime takes time linear in the length of the prime. Now,
the two-party protocol to sign secret messages is as follows (cf. [11]). First,
the TPM sends the issuer a commitment to the message-pair (fo, f1), i.e.,
U:= R(J;O R{l SY" where v/ is a value chosen randomly by the TPM to “blind”

the f;’s. Also, the TPM computes Ny := C{°+f12lf mod I', where (; is a
quantity derived from the issuer’s name, and sends U and Ny to the issuer.
Next, the TPM convinces the issuer that U and N correctly formed (using
a proof of knowledge a representation of U w.r.t. the bases Ry, R1, S and Ny
w.r.t. ¢;) and that the f;’s lie in {0, 1}4+#+tea+2 where Uy, 1, and £y are
security parameters. This interval is larger than the one from which the f;’s
actually stem because of the proof of knowledge we apply here. If the issuer
accepts the proof and has verified that U and N; where indeed generated

24

and set by a valid TPM, it compares N; with previous such values obtained
from this TPM to decide whether it wants to issue a certificate to TPM
w.r.t. N7 or not. (The issuer might not want to grant too many credentials
to the same TPM w.r.t. different Ny, but should re-grant a credential to a Ny
it has already accepted.) To issue a credential, the issuer chooses a random
£,-bit integer v” and a random /.-bit prime e, signs the hidden messages
by computing A := (Ugv,,)l/e mod n, and sends the TPM (A, e,v”). The
issuer also proves to the TPM that she computed A correctly. The signature
on (fo, f1) is then (A, e, v :=v' +v"), where v should be kept secret by the
TPM (for fy and f1 to remain hidden from the issuer), while A and e can
be public.

A TPM can now prove that it has obtained attestation by proving that
it got a CL-signature on some values fy and f;. This can be done by a
zero-knowledge proof of knowledge of values fy, fi, A, e, and v such that
AeRgoRflS” = Z (mod n). Also, the TPM computes Ny := CfOJrflzzf mod
I' and proves that the exponent here is related to secrets contained in the
attestation, where ¢ € (), i.e., the subgroup of Z; of order p.

As mentioned in the introduction, the base (is either chosen randomly
by the TPM or is generated from a base name value bsny provided by the
verifier. The value Ny serves two purposes. The first one is rogue-tagging;:
If a rogue TPM is found, the values fy and f; are extracted and put on a
blacklist. The verifier can then check Ny against this blacklist by comparing

it with §f0+f12£f for all pairs (fo, f1) on the black list. Note that i) the black
list can be expected to be short, ii) the exponents fo + f12€f are small
(e.g., 200-bits), and iii) batch-verification techniques can be applied [2]; so
this check can be done efficiently. Also note that the blacklist need not be
certified, e.g., by a certificate revocation agency: whenever fy, f1, A, e, and
v are discovered, they can be published and everyone can verify whether
(A,e,v) is a valid signature on fy and f;. The second purpose of Ny is
its use as a pseudonym, i.e., if ¢ is not chosen randomly by the TPM but
generated from a base name then, whenever the same base name bsny is
used, the TPM will provide the same value for Ny. This allows the verifier
to link different transactions made by the same TPM while not identifying
it, and to possibly reject a Ny if it appeared too many times. By defining
how often a different base name is used (e.g., a different one per verifier and
day), one obtains the full spectrum from full identification via pseudonymity
to full anonymity. The way the base name is chosen,the frequency it is
changed, and the threshold on how many times a particular Ny can appear
before a verifier should reject it, is a question that depends on particular

25

scenarios/applications and is outside of the scope of this document.

From this high-level description and the preceding sections, it should be
clear how the DA A-Join and DA A-Sign protocols work. However, the design
goal of the protocol was to have the TPM to perform as few operations of
the signature receiver but to instead have the platform doing them. Indeed,
investigating the trust relationships and the protocols, it turns out that
some operations that would be carried out by the TPM if one implemented
the scheme as just discussed can be outsourced to the host in which the
TPM is embedded: it is sufficient if the TPM performs only the operations
that are critical to security, i.e., to ensure that attestation cannot be proved
without the use of the TPM to which the attestation was issued. All the
other operations of the signature receiver, in particular the ones that ensure
privacy, can be performed by the host (the host could always destroy the
privacy of the protocol anyway, e.g., by reveal a TPM’s identity). This
requires of course some modification of the previous section’s protocols to
obtain a signature and to prove knowledge of a signature.

4.3 System Parameters

We employ the security parameters £y, (¢, Le, £,, Ly, {e, Uy, Cr, ¢r, and
¢,, where ¢, (2048) is the size of the RSA modulus, ¢¢ (104) is the size of
the f;’s (information encoded into the certificate), £, (368) is the size of the
e’s (exponents, part of certificate), £, (120) is the size of the interval that
the e’s are chosen from, £, (2536) is the size of the v’s (random value, part
of certificate), £z (80) is the security parameter controlling the statistical
zero-knowledge property, ¢4 (160) is the output length of the hash function
used for the Fiat-Shamir heuristic, £, (80) is the security parameter needed
for the reduction in the proof of security, ¢r (1632) is the size of the modulus
I', and £, (208) is the size of the order p of the sub group of Z. that is used
for rogue-tagging (the numbers in parentheses are reasonable examples for
these parameters). We require that: le > lg + y + max{{; +4 , 0, + 2} ,
by > Uy + Ly + Uy +max{l;+{, +3, {z+ 2}, and £, = 2(;.

The parameters /1 and £, should chosen such that the discrete logarithm
problem in the subgroup of Z; of order p with I' and p being primes such
that 2% > p > 2%~ and 20 > T' > 207~1 has about the same difficulty as
factoring ¢,,-bit RSA moduli (see [21]).

The scheme also requires Hp(-) and H(:), two collision resistant hash
functions Hr(-) : {0,1}* — {0,1}rT% and H(-): {0,1}* — {0, 1}**.

26

4.4

Key Generation

Let us describe how the issuer chooses its public and secret keys. The public

key

will be accompanied by a non-interactive proof (using the Fiat-Shamir

heuristic) that the keys were chosen correctly. The latter will guarantee

the

security requirements of the host (resp., its user), i.e., that anonymity

property of DAA will hold.

1

. The issuer chooses a RSA modulus n = pq with p = 2p'+1, ¢ = 2¢' +1
such that p, p/, ¢, and ¢’ are all primes and n has /,, bits.

. Furthermore, it chooses a random generator S of QR,, (the group of
quadratic residues modulo n).

Next, it chooses random integers xg,z1, 2, € [1,p'q] and computes

Z:=5""modn , Ry:=S"modn , and R;:=S" modn .

It produces a non-interactive proof proof that Ry, Ry, and Z were
computed correctly, i.e., that Z, Ry, R € (S). That is, the issuer
produces the “signature of knowledge”

proof = SPK{(ap, a1,) :
Z=5%% (modn) AN Rp=5* (modn)A
Ry =5 (mod n)}(Z, Ry, R1,S,n)

using binary challenges.

It generates a group of prime order: Choose random primes p and I’
such that T' = rp + 1 for some 7 with p { r, 20~1 < T' < 2 and
2/r=1 < p < 2%. Choose a random 7' € Z} such that AT

1(I=1)/p

(mod I") and set v := mod I' and choose a random element

¢r €r (7).

Finally, it publishes the public key (n, S, Z, Ry, R1,7,(r,I", p) and the
proof proof and stores p'q’ as its secret key.

If Ry, R1, S, and Z are not formed correctly, it could potentially mean
that the security property for the TPM /host do not hold. Also, if v does

not
sign

generate a subgroup of Zf, the issuer could potentially link different
atures. However, it is sufficient if the platform/host (i.e., owner of the

TPM) verifies the proof that these quantities were computed correctly only

27

once; it could even be sufficient if one representative of platform users checks
this proof.

We finally note that it is not important for the anonymity requirement
that n be a product of two safe primes - the issuer is the only party whose
security depends on this choice.

4.5 Obtaining Attestation (DA A-Join)

As input to the protocol, the TPM and the host receive the public key of the
issuer and all the system parameters. We assume that the correctness of this
public key is verified. Furthermore, the TPM has as input the endorsement
secret key that allows it to authenticate itself to the issuer. The input of the
issuer consist of its secret keys and the endorsement public key of the TPM.
We assume that the issuer has verified prior to the protocol’s execution that
the endorsement public key of the TPM is properly certified and that the
TPM-host pair are eligible to obtain attestation.

1. The TPM chooses a random f € Zj, computes its pseudonym N; with
the issuer as Ny := C{ mod I', and sends Ny to the issuer.

”

2. The issuer checks for all (fy, fi) on the rogue list whether Ny ;é
(¢fotf 12) (mod TI'). The issuer also checks this for the Ny this plat-
form had used previously. If the issuer finds the platform to be rogue,
it aborts the protocol.

3. Next, the TPM, the host, and the issuer run a protocol to obtain a
signature on secret messages fo and f1, where fy corresponds the /
low-order bits of f and f; the remaining ones (i.e., f = fo + 24f;
and 0 < fy < 2% holds). In this protocol, the issuer also needs to be
convinced that

e the secret messages are compatible with the pseudonym N; and
that
e these messages are held within a valid TPM.
Therefore, and as the role of the signature receiver is split between the
TPM and the host, the protocol that the three parties run to issue

the signature differs from the one presented in Section [3.§| and is as
follows.

28

(a) The TPM chooses v’ € {0, 1} *% computes the quantity U :=
RgoRfl S mod n, and sends U to the issuer.

(b) The TPM proves to the issuer knowledge of fo, fi, and v': it
executes as prover the protocol

PK{(fo, f1,v') :
! V4
U= j:R(J;OR{lsv (mOd n) AN Ny = <{0+f12 f (mOd F) A
anfl c {0’ 1}£f+€;a+€71+2 AV c {07 1}Zn+ﬁg+£H+2}

with the issuer as the verifier.

(¢c) The TPM authenticates U to the issuer using its endorsement
secret key (see remark below for details).

(d) The issuer chooses © € {0,1}**~1 and a prime e € [2f71, 2f 1+
2le=1], computes

Z)1 Je

"= 4 201 d A= (—
v 0+ an (USU

mod n

and sends A and v” to the host.

(e) To convince the host that A was correctly computed, the issuer
as prover runs the protocol

Z

PK{(0): A= i(W

)5 (mod n)}

with the host.

(f) The host verifies whether e is a prime that lies in [2f~1, 2¢—1 +
ote—1],

4. The host stores (A, e) and sends v” to the TPM.

5. The TPM receives v”, sets v := (v" +v'), and stores (fo, f1,v).

After this protocol the host and the TPM have together obtained a
DA A-certificate , although each of them knows only parts of it.

In the protocol we required that the TPM prove to the issuer that the
value U stems from the TPM that owns a given endorsement public key FK.
Which, assuming that such a TPM would only authenticate value U that it
had generated, the following protocol could be used to achieve this.

(a) The issuer chooses a random n. € {0,1}* and encrypts n, under the
EK and sends the encryption to the TPM.

29

(b) The TPM decrypts this and thereby retrieves some string n.. Then,
the TPM computes ay := H(U||n) and sends agy to the issuer.

(c) The issuer verifies if ay = H(U||ne) holds.

This protocol is in the same spirit as the protocol to “authenticate” the AIK
in the towards the “Privacy CA” TCG TPM 1.1b specification.

As the DAA-Join protocol is based on the protocol given in §3.8] it
can also only be run sequentially to guarantee security for the issuer. Of
course, one could apply any of the techniques mentioned in to obtain a
protocol that can be run concurrently with many platform. However, a this
had required substantial more code inside the TPM, it was preferred not to
apply any of them but to restrict the number of platforms with which the
protocol can be run concurrently. That is, the issuer can run the protocol
concurrently with a small (logarithmic in the security parameter, e.g., 20-30)
number of platforms in batches ensuring that the protocol with all TPM in
a batch is either finished or aborted before it starts the next batch.

4.6 Proving Attestation (DAA-Sign)

Assume that the TPM and the host have obtained attestation, i.e., possess
a DAA-certificate and want to convince a verifier of this fact. Before the
protocol is run, the verifier specifies whether the protocol should be run
w.r.t. a random base or a named base (cf. Step 1 of the protocol). The host
specifies by a bit b whether the to be generated DAA-signature should be
on an attestation identity key (AIK) the TPM has generated as message or
on a message m chosen by the host. After this set-up, the protocol below
is run. This protocol differs from the one described by Brickell et al. [4] in
that it uses some optimizations as proposed by Camenisch and Groth [§].

The input to TPM are all system parameters, the issuer’s public key,
the TPM’s output of the DAA-Join protocol, the bit b and, depending on
b’s value, a message m or an attestation identity key. The input to host
are all system parameters, the issuer’s public key, the host’s output of the
DAA-Join protocol, and, depending on the verifier’s selection, the verifier’s
current base name bsny. The input to the verifier are all system parameters,
the issuer’s public key, the bit b, a message m or, depending on b’s value,
an attestation identity key, and, depending on the verifier’s selection, the
verifier’s current base name bsny .

1. (a) Depending on the verifier’s request (i.e., whether bsny # L or

30

not), the host computes ¢ as follows
Cer(y) or (= (Hp(1fbsny))T"D/" mod T

and sends ¢ to the TPM.
(b) The TPM checks whether (¥ =1 (mod I').

2. (a) The TPM computes Ny := Cf0+f12£f mod I and sends Ny to the
host.

3. Now, the TPM and host together produce a “signature of knowledge”
that together they know a DA A-certificate and that Ny was computed
from the secret messages contained in that certificate. Again, this
could in principle be done just by the TPM using a version of the
protocol discussed in the previous section to proof knowledge of a
signature on a secret message and then that the secret message was
used to compute Ny . However, as to save resources of the TPM, this
task is distributed between the TPM and the host. More precisely, the
TPM runs as prover the protocol

PK{(”? %0, 901) :
U=S"R°RY" (mod n) A Ny = C“"O“‘”Qtzf (mod T') A
Y0, ¥P1 € {Oa 1}Zf+fg+f7-(+2}

with the host as verifier. The host will then use the messages of this
protocol and use then to generate the signature of knowledge

SPK{(E, I;a ®o, (701) :
ZA™2 T = £ ACSPREORST (mod n) A
Ny = (‘p0+‘p12ef (mod I') A
0o, 1 € {0, 1}rHletnt2 A o e 100 1}t la 2y (p|m)
This is done as follows.

(a) i. The host picks random integers w € {0,1}*% and com-
putes A’ := AS™" mod n.
ii. The TPM picks random integers

ly+Llg+L N a4
Ty ER{O,l} +’5+H, Tfos T fr GR{O,l} st ’5+H,

31

and computes

U:= Ry°R,"S™ mod n ,
TFi=Tf +7“f12£f mod p , and
Ny := ¢ mod T .

The TPM sends Tu and]\7\/ to the host.
iii. The host picks random integers

!
re €{0,1}fet ettt and r, {0, 1}fetintlotin
and computes

A =UA"S™ mod n

(b) i. Host receives the nonce n, from the verifier and computes

cn = H((nllgllg' || RollRal| S| Z|I¥[IT[| p)I<]]
AN [[AINV)Inw) -

and sends ¢, to the TPM.
ii. The TPM chooses a random n; € {0,1}*¢ and computes

¢ = H(H(cp|n)[bl[m) -

and sends ¢, n; to the host.

(¢) i. The TPM computes (over the integers)

Syi= ry+ec-v Spg i= Tf,+cC-fo, and

Spp = T+ fi

and sends (sy,5f,,5f,) to the host.
ii. The host computes (over the integers)

Sei= retc-(e—2"") and spi= s, +rutc-(e-w) .

4. The host sends the signature

0 = (C’A,)NV7C) ntv(sﬁvstpoasgm?se)) (3)

to the verifier.

32

5. The verifier first checks whether the values contained in o are a valid
signature of knowledge

SPK{(€7 ﬁv %0, QDI) :
ZAY T = :l:A/ESDRgORfl (mod n) A
— 300+<,012£f
Ny =¢ (mod T') A
0,1 € {0, 1Y HeF0t2 A 2 @ {0, 1}t t2 (b]m)
That is, the verifier
(a) computes
VA 1—2fe=1\c pSwo PSe1 Alse QS
A= (ZA)R, R 7t A% S°7 mod n and
Ny = Noggpro ™
and verifies whether
?
c=H(HH((nllglg Rl Rol R1ISIIZIIFITlp) <]
ANy | A[[Nv)[|ny) [[ne) [[b]|m)
and
? ? /
S0y Spo € £{0, 1}irTletirtl and 5. € {0, 1}feTeTintl
all holds.

6. If ¢ was derived from the verifier’'s base name, the verifier also checks
?
whether ¢ = (Hp(1|[bsny))T—1/? (mod T).
7. Finally, for all (fo, fi) on the rogue list, the verifier checks whether
?
Ny # (¢Ft127) (mod).

4.7 Security Discussion

A full proof of security (and a formal model of DAA) is outside the scope
of this chapter. Let us discuss here informally why the protocols described
above meet our goals.

The informal properties that we wanted to achieve are unforgeability,
anonymity, and rogue tagging (cf. . Unforgeability requires that a host

33

and TPM can only successfully run a DAA-Sign protocol if they had pri-
orly obtained attestation, i.e., a signature by the attester/issuer on some
secret messages, which in turned required to possess an endorsement cer-
tificate. This is satisfied because it can be shown that TPM and the host
can only produce a DAA-Signature if possessing a DA A-certificate on some
secret messages and these secret messages where used to compute Ny (in
the prescribed way). Also note that the TPM’s part of the DA A-certificate
cannot be extracted from it (e.g., by a malicious host) by running the DAA-
Sign or DAA-Join protocol, as the TPM only ever used these to compute
pseudonyms N; and Ny (from which the secret can only be extracted by
computing discrete logarithms) and then as secrets in proofs of knowledge
which provably reveal no information about the TPM’s secrets fy and fi.
Now as these two secrets are an essential part of a DA A-certificate, the host
cannot prove possession of a DA A-certificate without involving the TPM. It
remains to argue that a DAA-certificate can only be obtained if the TPM
possesses a certificate on its endorsement key pair. It is assumed that the
TPM does not leak its endorsement secret key. Now, the mechanism used
in the DA A-Join protocol ensures that the value U was indeed computed
by the very same TPM that possesses the secret key corresponding to the
certified endorsement public key. As the attester/issuer will only issue a
certificate on messages committed in a U generated by an endorsed TPM,
it is ensured that a certificate gets only issued to a TPM holding a valid
endorsement certificate and, moreover, that the messages committed in U
are only known to the TPM. Thus, we have argued unforgeability.

Let us consider anonymity. We have to show that a DA A-Signature can-
not be linked to an execution of the DAA-Join protocol (i.e., to an issuer’s
transcript of the protocol) and that two DAA-Signatures cannot be linked
provided they are produced w.r.t. a different named base (. Here, linking
means that one cannot tell whether the two transcripts stem from the in-
teraction with the same or different TPM-host pairs. First we note that, in
the so-called random oracle model, all the information, i.e., the signature

0= (<7 A/> NV7 C, Ny, (3177 S Sp1s 36)) 5

the host sends to the verifier is simulatable. That is, first of all by the zero-
knowledge property of the proof of knowledge, the values ¢, n¢, (55, 5405 515 5¢)
can be replaced by random values without that it can be noted. Next, the
value A’ can be replaced by a random element from (S) as A’ is randomly
distributed in (S) if computed correctly by the host without that it can
be noted. Finally, ¢ and Ny can be replaced by random values as well.

34

Now, this last change cannot be noted unless the Decisional Diffie-Hellman
problem is easy.

Thus, given two DAA-Signatures made w.r.t. different bases ¢ we could
replace both of them by random values unnoticeable and therefore as being
random signatures cannot be linked anymore. Similarly, an issuer’s tran-
script of a DAA-Join protocol execution and a DAA-Signature cannot be
linked as, again, the signature could be replaced by random values.

Let us finally consider rogue-tagging. This property requires that when
secrets fo and fi have been extracted from a TPM (e.g., by physical extrac-
tion) together with the other parameters of a DA A-certificate, and that there
secrets have been put on a black list, then it is recognizable if a TPM-host
pair (or any other party) runs the DAA-Sign protocol with this certificate.
That this property holds is easy to see: Given fg and fi, anyone can compute
Ny := (fotf 127 mod T and then check whether it matches the Ny received
in a DA A-Signatures. Moreover producing such a signature requires knowl-
edge of a certificate containing the messages corresponding to Ny, thus one
could use the DA A-certificate but trying to use other messages to generate
Ny

4.8 Extensions

As we have seen only a part of the direct anonymous attestation protocol is
run on the TPM and thus is “cast in stone”, i.e., implemented in hardware.
This allows for the modification of the non-TPM parts of the protocol to
extend the direct anonymous attestation scheme in a number of directions.
For instance it is not hard to add attributes to the certificate, i.e., to
have the issuer sign further (secret or non-secret) messages apart from fy
and f1. Let us discuss this extension. For simplicity we assume that the
user of the platform wants to add the secret message mo as an attribute
and that the issuer want to add the known message ms3 as an attribute.
The requires that the issuer’s public key further comprises values Ry and
R3 randomly chosen from (S). Then the join protocol would need to be
modified as follows: Before step 3d) of the Join protocol, the host would

i. choose v}, €r {0, 1} compute U, := R}" Svh mod n and and send
U}, to the issuer;

ii. and prove to the issuer that U, was computed correctly, i.e., run
PK{(pu2,v}): U= :l:RgQS”;L (mod n) A v}, € {0,1}nTtettnt2)

with the issuer as the verifier.

35

In the Steps 3c) and 3d), the issuer would needs to consider U, and ms, i.e.,
they would become the following steps.

3c) The issuer chooses © €g {0,1}*~! and a prime e € [2f71 2t~ 4
2le=1], computes

VA 1/e
)/

"= 4 201 d A= (——mr
v U+ an (UUhng’S”

mod n

and sends A and v” to the host.

3d) To convince the host that A was correctly computed, the issuer as
prover runs the protocol

Z

0

PK{(6): A==(

with the host.

All other steps of the Join protocol remain unchanged except that the host
also needs to store (v}, ma, m3) along with (4, e).

Proving possession of attestation containing further attributes is similar
to the original protocol, only that now the host has to extend the proof
messages obtained from the TPM into a signature that takes into account
the additional attributes. We leave it as an exercise to the reader to derive
the protocol for doing this from the DAA-Sign protocol and the protocol
described in to prove possession of a CL signature. As in the latter
protocol, the host could also provide to the verifier a commitment to an
attribute contained in the attestation.

5 Applications of DAA

Besides the original purpose to authenticate a TPM’s measurements, the
DAA protocol has also other applications. Let us briefly discuss a two of
them.

5.1 Binding Access-Credentials to a TPM

Assume an IT department of some company wants to protect access to the
company’s resources such as its VPN or accounting databases. Traditionally,
these resources are protected by user name and password or, better, using
public key cryptography with some protocol such as SSH. Unfortunately,

36

these credentials are vulnerable to malware such as viruses or phishing at-
tacks. Also, a user might just reveal them to unauthorized persons. For
instance, a user might share a subscription to, e.g., the Wallstreet Journal,
with her friends by sharing her login-information. It seems that these prob-
lems can only be overcome by using some piece of tamper resistant hardware.
Indeed, many companies protect access to VPN by replacing the password
by a one-time password generated by a hard-ware token. However, this so-
lution requires additional hardware to be distributed and furthermore does
not scale very well.

The DAA protocol offers a solution to this that is also easy to deploy [6]:
When our IT department gets shipped new laptops, they need only to en-
ter the (public parts) of the endorsement keys of the TPM embedded into
these laptops in their database together with the access rights the users
of these laptops shall have. Then, when a user get the laptop, she only
needs to initiate the DAA-Join protocol as a result of which she will get
DAA-credential(s) to access all the applications she is granted access. The
credentials for the different applications could either be distinguished by dif-
ferent issuer public keys or, better, by inserting one or more attributes into
the credential specifying to which application(s) the credential will provide
access. Later, if the user wants to access a service, she would initiate the
DAA-Sign protocol, possibly revealing the attribute specifying the applica-
tion she wants to access. As the user cannot only do this while having access
to the TPM the credential was issued to, this effectively prevents malware
and phishing attacks as well as social attacks where the users themselves
leak credentials.

As the TPM can handle certificates from several issuers, such a systems
also scales well, i.e., the same TPM could be used to protect the user’s access
to e-banking as well as her employer’s VPN. One might argue that binding a
user’s credentials to a particular TPM has the drawback that the user can use
her credentials only with a single platform. However, using attributes this
can easily be overcome. The idea is as follows. The user would be required
to register all her platforms with some third party whose sole purpose is to
ensure that the same user cannot register too many platforms. In particular,
the party does not need to be trusted by the user from a privacy point of
view as we will see. This third party will then issue a DAA-credential to
each of these platform such that all these credentials contain as attribute
a number that is unique. The party need not to know this number, it just
needs to ensure that it’s unique to the user. So it could for instance be a
random number that the user and the party jointly generate such that only
the user learns it. Later, the party and the user would run the DAA-Join

37

protocol in such a way that this number will be embedded as an attribute.

When the user later wants to obtain a credential giving her access to
some service, she sends the service provider a commitment to her unique
number and proves to the service provider that she has obtained a DAA-
certificate from the third party that contains the committed unique number.
The service provider will then issue the user a CL-signature on that unique
number as credential to access the service (service-certificate). Note that the
service provider need not to learn this unique number (cf. either. Now
the user can use this service certificate with any TPM she registered. That
is, to access the service she would provide the service provider a (fresh)
commitment to her unique number and then prove that she possesses a
DA A-certificate that contains as attribute the committed number as well as
a CL-signature (service-certificate) by the service provider on that number.
Thus, the service provider will be ensured that the user will not be able to
share her credentials with her friends while the user can access the service
anonymously with all her platforms.

5.2 Better Privacy Yet Detecting Rogues

Consider the privacy provided by the original DA A-Sign protocol as describe
in As we had discussed, the reason that the TPM sends the verifier the
pseudonym Ny is to enable the verifier to assess whether or not the TPM
is rogue. There are two different tests. The first one checks whether the
claimed TPM at hand had used keys that are known to be rogue ones and the
second one uses a frequency analysis, i.e., checks whether the keys used where
used many times before. While the first check works for a base (y chosen at
random or for one that is derived from the verifier’s base name, the second
one does not work for a randomly chosen base. Indeed, the second test
requires that the base (i be fixed for a sufficiency long period of time. This
however has the drawback that the privacy of legitimate TPM-host pairs
is reduced as all their transactions with that verifier can be linked during
this period of time. In particular, this would allow for profiling as proving
ownership of a DAA-certificate and the actual payload (e.g., consuming a
service) need to happen in same transactions. Luckily, one could use the
technique described in the previous section to separate the frequency check
and the payload transaction while retaining security [5]. The idea is that
the platform (i.e., the TPM-host pair) first proves knowledge of a DAA-
certificate w.r.t. to a long-term (y,. Then, if the frequency checks succeeds,
a one-time anonymous credential is issued that is bound to the TPM as
described above, where the one-time property is achieved by including as

38

secret attributes into the credential a random serial number and the name of
the service provider of the payload (and possibly an expiration date). Then,
the platform can contact the service provider for the payload transaction,
show that it possess a DAA-certificate using a random base ¢ and then
proving possession of the one-time credential where there it needs to reveal
the random serial number, the verifier’s name and the expiration date and
to prove that these are contained in the credential as attributes.

Therefore, the service provider is assured that the TPM is not a rogue
while the platform is guaranteed (almost) the same privacy as if a random
base was used.

6 Conclusion

In this chapter we have discussed the probably first privacy enhancing cryp-
tographic protocol that is standardized. At the time of this writing, the
first TPM chips implementing the DAA protocol become available. We have
hinted that DAA is extensible and has some other applications apart from
authenticating in a privacy friendly way the measurements made a TPM.
We hope that the protocol and its extensions will make today’s computer
networks a more privacy friendly place and that many authentication needs
can be satisfied while retaining privacy.

References

[1] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and
provably secure coalition-resistant group signature scheme. In M. Bel-
lare, editor, Advances in Cryptology — CRYPTO 2000, volume 1880
of Lecture Notes in Computer Science, pages 255-270. Springer Verlag,
2000.

[2] M. Bellare, J. A. Garay, and T. Rabin. Fast batch verification for
modular exponentiation and digital signatures. In K. Nyberg, editor,
Advances in Cryptology — FEUROCRYPT 98, volume 1403 of Lecture
Notes in Computer Science, pages 236—250. Springer Verlag, 1998.

[3] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In First ACM Conference on Computer
and Communication Security, pages 62-73. Association for Computing
Machinery, 1993.

39

[4]

[11]

[12]

E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation.
In Proc. 11th ACM Conference on Computer and Communications Se-
curity, pages 225-234. acm press, 2004.

J. Camenisch. Better privacy for trusted computing platforxms. In
P. Ryan and P. Samarati, editors, European Symposium on Research
i Computer Security — ESORICS 2004, Lecture Notes in Computer
Science. Springer Verlag, 2004.

J. Camenisch. Protecting (anonymous) credentials with the trusted
computing group’s trusted platform modules V1.2. Technical Report
TRxx-xx, IBM Reserach, Jan. 2005.

J. Camenisch and I. Damgard. Verifiable encryption, group encryp-
tion, and their applications to group signatures and signature shar-
ing schemes. In T. Okamoto, editor, Advances in Cryptology — ASI-
ACRYPT 2000, volume 1976 of Lecture Notes in Computer Science,
pages 331-345. Springer Verlag, 2000.

J. Camenisch and J. Groth. Group signatures: Better efficiency and
new theoretical aspects. In proceedings of SCN ’04, volume 3352 of
LNCS, pages 120-133, 2004.

J. Camenisch and A. Lysyanskaya. Efficient non-transferable anony-
mous multi-show credential system with optional anonymity revoca-
tion. In B. Pfitzmann, editor, Advances in Cryptology — EUROCRYPT
2001, volume 2045 of Lecture Notes in Computer Science, pages 93—118.
Springer Verlag, 2001.

J. Camenisch and A. Lysyanskaya. Dynamic accumulators and appli-
cation to efficient revocation of anonymous credentials. In M. Yung,
editor, Advances in Cryptology — CRYPTO 2002, volume 2442 of Lec-
ture Notes in Computer Science, pages 61-76. Springer Verlag, 2002.

J. Camenisch and A. Lysyanskaya. A signature scheme with efficient
protocols. In S. Cimato, C. Galdi, and G. Persiano, editors, Security in
Communication Networks, Third International Conference, SCN 2002,
volume 2576 of Lecture Notes in Computer Science, pages 268—289.
Springer Verlag, 2003.

J. Camenisch and V. Shoup. Practical verifiable encryption and decryp-
tion of discrete logarithms. In D. Boneh, editor, Advances in Cryptology

40

[21]

[22]

— CRYPTO 2008, volume 2729 of Lecture Notes in Computer Science,
pages 126-144, 2003.

J. Camenisch and M. Stadler. Efficient group signature schemes for
large groups. In B. Kaliski, editor, Advances in Cryptology — CRYPTO
’97, volume 1296 of Lecture Notes in Computer Science, pages 410-424.
Springer Verlag, 1997.

D. Chaum. Security without identification: Transaction systems to
make big brother obsolete. Communications of the ACM, 28(10):1030—
1044, Oct. 1985.

D. Chaum and E. van Heyst. Group signatures. In D. W. Davies, editor,
Advances in Cryptology — EUROCRYPT ’91, volume 547 of Lecture
Notes in Computer Science, pages 257-265. Springer-Verlag, 1991.

[. Damgard. Efficient concurrent zero-knowledge in the auxiliary string
model. In B. Preneel, editor, Advances in Cryptology — FUROCRYPT
2000, volume 1807 of Lecture Notes in Computer Science, pages 431—
444. Springer Verlag, 2000.

A. Fiat and A. Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In A. M. Odlyzko, editor,
Advances in Cryptology — CRYPTO ’86, volume 263 of Lecture Notes
in Computer Science, pages 186-194. Springer Verlag, 1987.

M. Fischlin. Communication-Efficient Non-Interactive Proofs of Knowl-
edge with Online Extractors. In V. Shoup, editor, CRYPTO ’05, 2005.

S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme se-
cure against adaptive chosen-message attacks. SIAM Journal on Com-
puting, 17(2):281-308, Apr. 1988.

J. Kilian and E. Petrank. Identity escrow. In H. Krawczyk, editor,
Advances in Cryptology — CRYPTO °98, volume 1642 of Lecture Notes
i Computer Science, pages 169-185, Berlin, 1998. Springer Verlag.

A. K. Lenstra and E. K. Verheul. Selecting cryptographic key sizes.
Journal of Cryptology, 14(4):255-293, 2001.

A. Lysyanskaya. Signature schemes and applications to cryptographic
protocol design. PhD thesis, Massachusetts Institute of Technology,
Cambridge, Massachusetts, Sept. 2002.

41

23]

D. Pointcheval and J. Stern. Security proofs for signature schemes.
In U. Maurer, editor, Advances in Cryptology — FEUROCRYPT ’96,
volume 1070 of Lecture Notes in Computer Science, pages 387-398.
Springer Verlag, 1996.

C. P. Schnorr. Efficient signature generation for smart cards. Journal
of Cryptology, 4(3):239-252, 1991.

Trusted Computing Group. Trusted computing platform alliance
(TCPA) main specification, version 1.1a. Republished as Trusted Com-
puting Group (TCG) main specifcation, Version 1.1b, Available at
www . trustedcomputinggroup.org, 2001.

Trusted Computing Group. TCG TPM specification 1.2. Available at
www . trustedcomputinggroup.org, 2003.

42

www.trustedcomputinggroup.org
www.trustedcomputinggroup.org

	Introduction
	Preliminaries
	Notation
	Cryptographic Assumptions and Handy Facts

	Protocols to Prove Knowledge of and Relations among Discrete Logarithms
	Schnorr's Identification Scheme
	Proving Knowledge of a Representation
	Combining Different Proof Protocols
	Proving Equality of Discrete Logarithms
	The Schnorr Protocol Modulo a Composite.
	Proving that a Secret Lies in a Given Interval
	The Camenisch-Lysyanskaya Signature Scheme
	Obtaining a Camenisch-Lysyanskaya Signature on a Secret Message
	Proving Possession of a Signature
	Guaranteeing Privacy to the User

	The Direct Anonymous Attestation Scheme (DAA)
	Informal Model of Direct Anonymous Attestation
	High-Level Description.
	System Parameters
	Key Generation
	Obtaining Attestation (DAA-Join)
	Proving Attestation (DAA-Sign)
	Security Discussion
	Extensions

	Applications of DAA
	Binding Access-Credentials to a TPM
	Better Privacy Yet Detecting Rogues

	Conclusion

